Electrophysical Properties of Binary Carbon Nanocomposites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrophysical properties of powders of carbon hybrid nanosized composites are studied depending on the content of single-wall carbon nanotubes (CNTs) and thermally reduced graphite oxide (TRGO). The effect of the bicomponent composition of the hybrid material is studied and the results of measurements of the specific low-frequency electrical conductivity at a frequency of 1 kHz, complex dielectric permittivity, and conductivity at a frequency of 9.8 GHz for the powders given above are presented. The effect of γ-irradiation on the measured characteristics of the powders is revealed. Research is aimed at finding fillers for modern effective composite radio-absorbing materials.

About the authors

G. V. Simbirtseva

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: sgvural@mail.ru
Россия, Москва

S. D. Babenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: sgvural@mail.ru
Россия, Москва

D. P. Kiryukhin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia

Email: sgvural@mail.ru
Россия, Черноголовка

A. A. Arbuzov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia

Author for correspondence.
Email: sgvural@mail.ru
Россия, Черноголовка

References

  1. Клименко И.В., Лобанов А.В., Трусова Е.А. и др. // Хим. физика. 2019. Т. 38. № 12. С. 74; https://doi.org/10.1134/S0207401X19120094
  2. Шаулов А.Ю., Владимиров Л.В., Грачев А.В. и др. // Хим. физика. 2020. Т. 39. № 1. С. 75; https://doi.org/10.31857/S0207401X2001015X
  3. Арбузов А.А., Володин А.А., Тарасов Б.П. // ЖФХ. 2020. Т. 94. № 5. С. 760; https://doi.org/10.31857/S0044453720050039
  4. Zhu Y., Li L., Zhang C. et al. // Nat. Commun. 2012. V. 3. Article 1225; https://doi.org/10.1038/ncomms2234
  5. Палазник О.М., Недорезова П.М., Польщиков С.В. и др. // Высокомолекуляр. соединения. 2019. Сер. Б. Т. 61. № 2. С. 144; https://doi.org/10.1134/S2308113919020086
  6. Zhang X., Zhao Z., Xu J. et al. // Carbon. 2021. V. 177. P. 216; https://doi.org/10.1016/j.carbon.2021.02.085
  7. Chen J., Liu B., Yan L. // Results Phys. 2019. V. 14. 102363; https://doi.org/10.1016/j.rinp.2019.102363
  8. Liu Z., Qian Z., Song J. et al. // Carbon. 2019. V. 149. P. 181;https://doi.org/10.1016/j.carbon.2019.04.037
  9. Feng J., Dong L., Li X. et al. // Electrochim. Acta. 2019. V. 302. P. 65; https://doi.org/10.1016/j.electacta.2019.02.008
  10. Li J., Tang J., Yuan J. et al. // Chem. Phys. Lett. 2018. V. 693. P. 60; https://doi.org/10.1016/j.cplett.2017.12.052
  11. Тарасов Б.П., Арбузов А., Можжухин С.А. и др. // Журн. структур. химии. 2018. Т. 59. № 4. С. 867; https://doi.org/10.26902/JSC20180411
  12. Laurila T., Sainio S., Caro M.A. // Prog. Mater. Sci. 2017. V. 88. P. 499; https://doi.org/10.1016/j.pmatsci.2017.04.012
  13. Romano M.S., Li N., Antiohos D. et al. // Adv. Mater. 2013. V. 25. № 45. P. 6602; https://doi.org/10.1002/adma.201301754
  14. Abdalla I., Elhassan A., Yu J. et al. // Carbon. 2020. V. 157. P. 703; https://doi.org/10.1016/j.carbon.2019.11.004
  15. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60; https://doi.org/10.31857/S0207401X20120146
  16. Zhou E., Xi J., Guo Y. et al. // Carbon. 2018. V. 133. P. 316; https://doi.org/10.1016/j.carbon.2018.03.023
  17. You B., Wang L., Yao L. et al. // Chem. Commun. 2013. V. 49. № 44. P. 5016; https://doi.org/10.1039/c3cc41949e
  18. Yuan Z., Xiao X., Li J. et al. // Adv. Sci. 2018. V. 5. № 2. Article 1700626; https://doi.org/10.1002/advs.201700626
  19. Mittal G., Dhand V., Rhee K.Y. et al. // J. Ind. Eng. Chem. 2015. V. 21. P. 11; https://doi.org/10.1016/j.jiec.2014.03.022
  20. Lin X., Liu X., Jia J. // Compos. Sci. Technol. 2014. V. 100. P. 166; https://doi.org/10.1016/j.compscitech.2014.06.012
  21. Арбузов А.А., Мурадян В.Е., Тарасов Б.П. // Изв. АН. Сер. хим. 2013. № 9. С. 1962.
  22. Ilin E.S., Bezrodny A.E., Predtechenskiy M.R. // TechConnect Briefs 2016. V. 1. Ch. 2 (Adv. Mater.). P. 65.
  23. Бранд А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Изд-во физ.-мат. лит., 1963.
  24. Shepherd C., Hadzifejzovic E., Shkal F. et al. // Langmuir. 2016. V. 32. P. 7917; https://doi.org/10.1021/acs.langmuir.6b02013
  25. Cuenca J.A., Thomas E., Mandal S. et al. // Carbon. 2015. V. 81. P. 174; https://doi.org/10.1016/j.carbon.2014.09.046
  26. Slocombe D., Porch A., Bustarret E. et al. // Appl. Phys. Lett. 2013. V. 102. № 24. Article 244102; https://doi.org/10.1063/1.4809823
  27. Hotta M., Hayashi M., Lanagan M.T. et al. // ISIJ Intern. 2011. V. 51. № 11. P. 1766.
  28. Симбирцева Г.В., Бабенко С.Д., Кирюхин Д.П. // Хим. физика. 2022. Т. 41. № 4. С. 32.
  29. Song M., Xu P., Song Y. et al. // AIP Adv. 2015. V. 5. № 9. Article 097130; https://doi.org/10.1063/1.4930966
  30. Пивень Н.П., Симбирцева Г.В., Арбузов А.А. и др. // Химия высоких энергий. 2019. Т. 53. № 6. С. 498; https://doi.org/10.1134/S0023119319060123

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (222KB)
4.

Download (47KB)

Copyright (c) 2023 Г.В. Симбирцева, С.Д. Бабенко, Д.П. Кирюхин, А.А. Арбузов