Effect of Structural Defects and Adsorbates on the Ballistic Conductivity of Carbon Nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the Landauer–Buttiker formalism and the nonorthogonal tight-binding Hamiltonian with NTBM parametrization, the electron transmission and conductivity of metal armchair-type nanotubes of subnanometer diameter are studied. We consider the effect of various structural defects (Stone–Wales defect, monovacancy, replacing a nitrogen atom) and radicals adsorbed on the nanotube surface (H, O, OH, COOH) on the electronic characteristics of carbon nanotubes (CNTs). It is found that structural defects and adsorbates have different effects on their conductivity. In this case, two competing processes are observed. On the one hand, this is a weakening of the conductive properties of CNTs due to the increase in the number of scattering centers, and, on the other hand, the increase in conductivity due to structural relaxation processes.

About the authors

V. B. Merinov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia; Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: Merinov.V.B@gmail.com
Россия, Москва; Россия, Москва

V. A. Domnin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia

Author for correspondence.
Email: Merinov.V.B@gmail.com
Россия, Москва

References

  1. Iijima S. // Nature. 1991. V. 354. P. 56; https://doi.org/10.1038/354056a0
  2. Rahman G., Najaf Z., Mehmood A. et al. // C. 2019. V. 5. № 3. P. 3; https://doi.org/10.3390/c5010003
  3. Li M., Liu X., Zhao X. et al. // Single-Walled Carbon Nanotubes / Eds. Li Y., Maruyama S. Springer Intern. Publ., 2019. P. 25; https://doi.org/10.1007/978-3-030-12700-8_2
  4. Guo T., Nikolaev P., Rinzler A.G. et al. // J. Phys. Chem. 1995. V. 99. P. 10694; https://doi.org/10.1021/j100027a002
  5. Guo T., Nikolaev P., Thess A. et al. // Chem. Phys. Lett. 1995. V. 243. P. 49; https://doi.org/10.1016/0009-2614(95)00825-O
  6. Kosakovskaya Z.Y., Chernozatonskii L.A., Fedorov E.F. // Pri’sma Zh. Eksp. Teor. Fiz. 1992. V. 56. P. 26.
  7. Journet C., Bernier P. // Appl. Phys. A. 1998. V. 67. P. 1; https://doi.org/10.1007/s003390050731
  8. Mintmire J.W., Dunlap B.I., White C.T. // Phys. Rev. Lett. 1992. V. 68. P. 631; https://doi.org/10.1103/PhysRevLett.68.631
  9. Tans S.J., Devoret M.H., Dai H. et al. // Nature. 1997. V. 386. P. 474; https://doi.org/10.1038/386474a0
  10. Hamada N., Sawada S., Oshiyama A. // Phys. Rev. Lett. 1992. V. 68. P. 1579; https://doi.org/10.1103/PhysRevLett.68.1579
  11. Wilder J.W.G., Venema L.C., Rinzler A.G. et al. // Nature. 1998. V. 391. P. 59; https://doi.org/10.1038/34139
  12. Min-Feng Y., Oleg L., J. D.M. et al. // Science. 2000. V. 287. P. 637; https://doi.org/10.1126/science.287.5453.637
  13. Baimova J.A., Fan Q., Zeng L. et al. // J. Nanomater. 2015. V. 2015. P. 186231; https://doi.org/10.1155/2015/186231
  14. Annin B.D., Baimova Y.A., Mulyukov R.R. // J. Appl. Mech. Tech. Phys. 2020. V. 61. P. 834; https://doi.org/10.1134/S0021894420050193
  15. Berber S., Kwon Y.-K., Tománek D. // Phys. Rev. Lett. 2000. V. 84. P. 4613; https://doi.org/10.1103/PhysRevLett.84.4613
  16. Kochaev A. // Phys. Rev. B. 2017. V. 96. P. 155428; https://doi.org/10.1103/PhysRevB.96.155428
  17. Kim P., Shi L., Majumdar A. et al. // Phys. Rev. Lett. 2001. V. 87. P. 215502; https://doi.org/10.1103/PhysRevLett.87.215502
  18. Kochaev A., Katin K., Maslov M. // Comput. Condens. Matter. 2019. V. 18. P. e00350; https://doi.org/10.1016/j.cocom.2018.e00350
  19. Ashraf M.A., Liu Z., Najafi M. // Rus. J. Phys. Chem. B. 2020. V. 14. № 2. P. 217; https://doi.org/10.1134/S1990793120020189
  20. Дышин А.А., Кузьмиков М.С., Алешонкова А.А. и др. // Сверхкрит. флюиды: теория и практика. 2021. Т. 16. С. 3; https://doi.org/10.1134/S1990793121080030
  21. Zuev Y.I., Vorobei A.M., Parenago O.O. // Rus. J. Phys. Chem. B. 2021. V. 15. № 7. P. 1107; https://doi.org/10.1134/S1990793121070174
  22. Vorobei A.M., Zuev Y.I., Dyshin A.A. et al. // Rus. J. Phys. Chem. B. 2021. V. 15. № 8. P. 1314; https://doi.org/10.1134/S1990793121080169
  23. Bianco A., Kostarelos K., Partidos C.D. et al. // Chem. Commun. 2005. P. 571; https://doi.org/10.1039/B410943K
  24. Balasubramanian K., Burghard M. // Small. 2005. V. 1. P. 180; https://doi.org/10.1002/smll.200400118
  25. Harrison B.S., Atala A. // Biomaterials. 2007. V. 28. P. 344; https://doi.org/10.1016/j.biomaterials.2006.07.044
  26. de las Casas C., Li W. // J. Power Sources. 2012. V. 208. P. 74; https://doi.org/10.1016/j.jpowsour.2012.02.013
  27. Jeong H.Y., Lee D.-S., Choi H.K. et al. // Appl. Phys. Lett. 2010. V. 96. P. 213105; https://doi.org/10.1063/1.3432446
  28. Leghrib R., Pavelko R., Felten A. et al. // Sens. Actuators, B. 2010. V. 145. P. 411; https://doi.org/10.1016/j.snb.2009.12.044
  29. Kumar S., Pavelyev V., Mishra P. et al. // Sens. Actuators, A. 2018. V. 283. P. 174; https://doi.org/10.1016/j.sna.2018.09.061
  30. Doshi M., Fahrenthold E.P. // Surf. Sci. 2022. V. 717. P. 121 998; https://doi.org/10.1016/j.susc.2021.121998
  31. Eskandari P., Abousalman-Rezvani Z., Roghani-Mamaqani H. et al. // Adv. Colloid Interface Sci. 2021. V. 294. P. 102471; https://doi.org/10.1016/j.cis.2021.102471
  32. Guo C., Wang Y., Wang F. et al. // Nanomater. 2021. V. 11. № 9. 2353; https://doi.org/10.3390/nano11092353
  33. da Silva Alves D.C., Healy B., Pinto L.A. de A. et al. // Molecules. 2021. V. 26. № 3. 594; https://doi.org/10.3390/molecules26030594
  34. Hu J., Yu J., Li Y. et al. // Nanomater. 2020. V. 10. № 4. 664; https://doi.org/10.3390/nano10040664
  35. Jones R.S., Kim B., Han J.-W. et al. // J. Phys. Chem. C. 2021. V. 125. P. 9356; https://doi.org/10.1021/acs.jpcc.0c11451
  36. Chang X., Chen L., Chen J. et al. // Adv. Compos. Hybrid Mater. 2021. V. 4. P. 435; https://doi.org/10.1007/s42114-021-00292-3
  37. Ridhi R., Chouksey A., Gautam S. et al. // Sensors Actuators, B. 2021. V. 334. P. 129658; https://doi.org/10.1016/j.snb.2021.129658
  38. Jian J., Guo X., Lin L. et al. // Ibid. 2013. V. 178. P. 279; https://doi.org/10.1016/j.snb.2012.12.085
  39. Mann D., Javey A., Kong J. et al. // Nano Lett. 2003. V. 3. P. 1541; https://doi.org/10.1021/nl034700o
  40. Cui K., Kumamoto A., Xiang R. et al. // Nanoscale. 2016. V. 8. P. 1608; https://doi.org/10.1039/C5NR06007A
  41. Hong B.H., Small J.P., Purewal M.S. et al. // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 14155 LP; https://doi.org/10.1073/pnas.0505219102
  42. Nanotube Modeler; http://jcrystal.com/products/wincnt/
  43. Катин К.П., Маслов М.М. // Хим. физика. 2011. Т. 30. № 10. С. 41; https://doi.org/10.1134/S1990793111090181
  44. Maslov M., Podlivaev A., Katin K. // Mol. Simul. 2016. V. 42. P. 305; https://doi.org/10.1080/08927022.2015.1044453
  45. Katin K.P., Grishakov K.S., Podlivaev A.I. et al. // J. Chem. Theory Comput. 2020. V. 16. P. 2065; https://doi.org/10.1021/acs.jctc.9b01229
  46. Markussen T., Rurali R., Brandbyge M. et al. // Phys. Rev. B. 2006. V. 74. P. 245313; https://doi.org/10.1103/PhysRevB.74.245313
  47. Prudkovskiy V., Berd M., Pavlenko E. et al. // Carbon. 2013. V. 57. P. 498; https://doi.org/10.1016/j.carbon.2013.02.027
  48. Grishakov K.S., Katin K.P., Maslov M.M. // Adv. Phys. Chem. 2016. V. 2016. P. 1862959; https://doi.org/10.1155/2016/1862959
  49. Podlivaev A.I., Openov L.A. // Semiconductors. 2017. V. 51. P. 636; https://doi.org/10.1134/S1063782617050219
  50. Podlivaev A.I., Openov L.A. // Phys. Solid State. 2015. V. 57. P. 2562; https://doi.org/10.1134/S1063783415120276
  51. Katin K.P., Maslov M.M. // J. Phys. Chem. Solids. 2017. V. 108. P. 82; https://doi.org/10.1016/j.jpcs.2017.04.020
  52. Katin K.P., Shostachenko S.A., Avkhadieva A.I. et al. // Adv. Phys. Chem. 2015. V. 2015. P. 506894; https://doi.org/10.1155/2015/506894
  53. Büttiker M. // Phys. Rev. Lett. 1986. V. 57. P. 1761; https://doi.org/10.1103/PhysRevLett.57.1761
  54. Landauer R. // Philos. Mag. A J. Theor. Exp. Appl. Phys. 1970. V. 21. P. 863; https://doi.org/10.1080/14786437008238472
  55. Büttiker M., Imry Y., Landauer R. et al. // Phys. Rev. B. 1985. V. 31. P. 6207; https://doi.org/10.1103/PhysRevB.31.6207
  56. Fisher D.S., Lee P.A. // Phys. Rev. B. 1981. V. 23. P. 6851; https://doi.org/10.1103/PhysRevB.23.6851
  57. Katin K.P., Maslov M.M. // Adv. Condens. Matter Phys. 2015. V. 2015. P. 754873; https://doi.org/10.1155/2015/754873
  58. Slepchenkov M.M., Shmygin D.S., Zhang G. et al. // Carbon. 2020. V. 165. P. 139; https://doi.org/10.1016/j.carbon.2020.04.069
  59. Glukhova O.E., Shmygin D.S. // J. Nanotechnol. 2018. V. 9. P. 1254; https://doi.org/10.3762/bjnano.9.117
  60. Sancho M.P.L., Sancho J.M.L., Rubio J. // J. Phys. F Met. Phys. 1984. V. 14. P. 1205; https://doi.org/10.1088/0305-4608/14/5/016
  61. Nardelli M.B. // Phys. Rev. B. 1999. V. 60. P. 7828; https://doi.org/10.1103/PhysRevB.60.7828
  62. Sancho M.P.L., Sancho J.M.L., Sancho J.M.L. et al. // J. Phys. F Met. Phys. 1985. V. 15. P. 851; https://doi.org/10.1088/0305-4608/15/4/009
  63. White C.T., Todorov T.N. // Nature. 1998. V. 393. P. 240; https://doi.org/10.1038/30420
  64. Salem M.A., Katin K.P., Kaya S. et al. // Physica. E. 2020. V. 124. P. 114319; https://doi.org/10.1016/j.physe.2020.114319
  65. Katin K.P., Maslov M.M. // Ibid. 2018. V. 96. P. 6; https://doi.org/10.1016/j.physe.2017.09.021
  66. Goler S., Coletti C., Tozzini V. et al. // J. Phys. Chem. C. 2013. V. 117. P. 11 506; https://doi.org/10.1021/jp4017536

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (313KB)
3.

Download (431KB)
4.

Download (271KB)

Copyright (c) 2023 В.Б. Меринов, В.А. Домнин