Euler Arches and Duffing Springs of a Few Nanometers in Size
- Authors: Avetisov V.A.1,2, Astakhov A.M.1, Valov A.|.1, Markina A.A.1, Muratov A.D.1,2, Petrovsky V.S.1,2, Frolkina M.A.1,2
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Design Center for Molecular Machines
- Issue: Vol 42, No 6 (2023)
- Pages: 21-39
- Section: К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ АКАДЕМИКА В.И. ГОЛЬДАНСКОГО
- URL: https://vestnikugrasu.org/0207-401X/article/view/674858
- DOI: https://doi.org/10.31857/S0207401X2306002X
- EDN: https://elibrary.ru/UGTCJZ
- ID: 674858
Cite item
Abstract
The molecular dynamics of a rod-like oligomer of N-isopropylmethacrylamide and helical oligomers of pyridine-furan several nanometers in size are studied by full-atomic computer simulation. It is shown that, under compression and tension, the dynamics of the oligomers are similar to the dynamics of classical bistable constructions such as Euler arches and Duffing oscillators. The critical values of power loads at which the dynamic states of oligomers bifurcate and the dynamics of oligomers become bistable are determined. It is shown that in the region of bistability oligomers can switch to the regime of spontaneous vibrations activated by thermal fluctuations of the environment at room temperature. For the regime of spontaneous vibrations, the effect of stochastic resonance is demonstrated. The possibility of using bistable oligomers for the detection of single organic molecules in solutions is discussed.
About the authors
V. A. Avetisov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia
A. M. Astakhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: avetisov@chph.ras.ru
Moscow, Russia
A. |F. Valov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: avetisov@chph.ras.ru
Moscow, Russia
A. A. Markina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: avetisov@chph.ras.ru
Moscow, Russia
A. D. Muratov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia
V. S. Petrovsky
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia
M. A. Frolkina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Design Center for Molecular Machines
Author for correspondence.
Email: avetisov@chph.ras.ru
Moscow, Russia; Moscow, Russia
References
- Peschot A. // Micromachines. 2015. V. 6. № 8. P. 1046.
- Dutreix C., Avriller R., Lounis B. et al. // Phys. Rev. Res. 2020. V. 2. № 2. P. 023268.
- Benda L., Doistau B., Rossi-Gendron C. et al. // Commun. Chem. 2019. V. 2. № 1. P. 1.
- Erbas-Cakmak S., Kolemen S., Sedgwick A. C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228.
- Varghese S., Elemans J. A. A. W., Rowan A. E. et al. // Chem. Sci. 2015. V. 6. P. 6050.
- Shu T., Shen Q., Zhang X. et al. // Analyst. 2020. V. 145. № 17. P. 5713.
- Lemme M.C., Wagner S., Lee K. et al. // Research. 2020. V. 2020. P. 1.
- Zhang L., Marcos V., Leigh D.A. // PNAS. 2018. V. 115. № 38. P. 9397.
- Shi Z.-T., Zhang Q., Tian H. et al. // Adv. Intelligent Systems. 2020. V. 2. № 5. P. 1900169.
- Aprahamian I. // ACS Central Sci. 2020. V. 6. № 3. P. 347.
- Nicoli F., Paltrinieri E., Tranfić M. // Coord. Chem. Rev. 2021. V. 428. P. 213589.
- Evans D.J., Searles D.J. // Adv. Phys. 2002. V. 51. № 7. P. 1529.
- Seifert U. // Rep. Prog. Phys. 2012. V. 75. № 12. P.126001.
- Horowitz J.M., Gingrich T.R. // Nat. Phys. 2020. V. 16. № 1. P. 15.
- Ciliberto S. // Phys. Rev. X. 2017. V. 7. P. 021051.
- Wang G.M., Sevick E.M., Mittag E. et al. //Phys. Rev. Lett. 2002. V. 89. № 5. P. 050601.
- Jop P., Petrosyan A., Ciliberto S. // Europhys. Lett. 2008. V. 81. № 5. P. 50005.
- Vroylandt H., Esposito M., Verley G. // Phys. Rev. Lett. 2020. V. 124. № 25. P. 250603.
- Аветисов В.А., Гольданский В.И. // УФН. 1996. Т. 166. № 8. С. 873.
- Avetisov V.A., Goldanskii V.I. // PNAS. 1996. V. 93. P. 11 435.
- Аветисов В.А. Гольданский В.И. // Хим. физика. 1997. Т. 16. № 8. С. 59.
- Аветисов В.А. // Хим. физика. 2003. Т. 22. № 2. С. 16.
- Arnold V.I. / Catastrophe Theory. Berlin-Heidelberg: Springer, 1984.
- Poston T., Stewart I. Catastrophe theory and its applications. Mineola, N.Y.: Dover Publication, 1996.
- Duffing G. Erzwungene schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg № 41–42. F. Vieweg & Sohn, 1918.
- Chaos / Eds. Korsch H.J., Jodl H.-J., Hartmann T. Berlin–Heidelberg: Springer, 2008. P. 157.
- Kramers H.A. // Physica. 1940. V. 7. № 4. P. 284.
- Benzi R., Sutera A., Vulpiani A. // J. Phys. A: Math. Gen. 1981. V. 14. № 11. P. L453.
- Benzi R., Parisi G., Sutera A. et al. // Tellus. 1982. V. 34. № 1. P. 10.
- Benzi R., Parisi G., Sutera A. et al. // SIAM J. Appl. Mathem. 1983. V. 43. № 3. P. 565
- Gammaitoni L., Haönggi P., Jung P. et al. // Rev. Modern Phys. 1998. V. 70. № 1. P. 223.
- Wellens T., Shatokhin V., Buchleitner A. // Rep. Prog. Phys. 2004. V. 67. № 1. P. 45.
- Baughman R.H., Cui C., Zakhidov A.A., Iqbal Z.r et al. // Science. 1999. V. 284. P. 1340.
- Fujii H., Setiadi A., Kuwahara Y. et al. // Appl. Phys. Lett. 2017. V. 111. № 13. P. 133501.
- Huang K., Zhang S., Li J. et al // Microsystem Technol. 2019. V. 25. № 11. P. 4303.
- Ackerman M.L., Kumar P., Neek-Amal M. et al. // Phys. Rev. Lett. V. 117. № 12. P. 126 801.
- Hayashi K., Lorenzo S., Manosas M. et al. // Phys. Rev. X. 2012. V. 2. № 3. P. 031 012.
- Cecconi C., Shank E.A., Bustamante C. et al. // Science. 2005. V. 309. № 5743. P. 2057.
- Avetisov V.A., Markina A.A. Valov A.F. // J. Phys. Chem. Lett. 2019. V. 10. № 17. P. 5189.
- Avetisov V.A., Frolkina M.A., Markina A. et al // Nanomaterials. 2021. V. 11. P. 3264.
- Markina A., Muratov A., Petrovskyy V. et al. // Nanomaterials. 2020. V. 10. P.2519.
- Convertine A.J., Ayres N., Scales C.W. et al. // Biomacromolecules. 2004. V. 5. № 4. P. 1177.
- Gao Y., Wei M., Li X. et al. // Macromol. Res. 2017. V. 25. № 6. P. 513.
- Kamath G., Deshmukh S.A., Baker G.A. // Phys. Chem. Chem. Phys. 2013. V. 15. № 30. P. 12667.
- Jones R.A., Civcir P.U. // Tetrahedron. 1997. V. 53. № 34. P. 11529.
- Sahu H., Gupta S., Gaur P. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. № 32. P. 20647.
- Berendsen H.J.C., Grigera J.R., Straatsma T.P. // J. Phys. Chem. 1987. V. 91. № 24. P. 6269.
- Abraham M.J., Murtola T., Schulz R. et al. // Software X. 2015. V. 1–2. P. 19.
- Kaminski G.A., Friesner R.A., Tirado-Rives J. et al. // J. Phys Chem. B. 2001. V. 105. № 28. P. 6474.
- Liang X., Nakajima K. // Macromol. Chem. Phys. 2018. V. 219. № 3. P. 1700394.
- Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126. № 1. P. 014101.
- Avetisov V.A, Kuz’min V.V, Anikin S.A. // Chem. Phys. 1987. V. 112. № 2. P. 179.
- Lai Z., Leng Y. // Mech. Systems Signal Processing. 2016. V. 81. P. 60.
Supplementary files
