Air Gasification of Wood at Increased Pressure in the Filtration Combustion Mode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The air gasification of wood at increased pressure in the filtration combustion mode is experimentally studied. It is experimentally shown that increasing the pressure in the reactor (up to 3 atm) during the gasification of wood leads to an increase in the productivity of the experimental setup (by a factor of 1.6), a decrease in the quantity of tars formed (by a factor of 1.5), and a change in the concentrations of outgoing gases. Thermodynamic calculations of the effect of pressure at the stage of wood pyrolysis are carried out. With an increase in pressure from 1 to 9 atm, the volume concentrations of hydrogen and carbon monoxide decrease, while the volume concentrations of the water vapor and carbon dioxide increase. However, at a pyrolysis temperature of 1300 K, an increase in pressure has practically no effect on the composition of gaseous products.

Sobre autores

V. Kislov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

M. Tsvetkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

A. Zaichenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

D. Podlesniy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

M. Salganskaya

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

Yu. Tsvetkova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

E. Salgansky

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vmkislov@icp.ac.ru
Chernogolovka, Russia

Bibliografia

  1. Arena U. // Waste Manag. 2012. V. 32. № 4. P. 625; https://doi.org/10.1016/j.wasman.2011.09.025
  2. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sust. Energ. Rev. 2023. V. 177. ID 113 213; https://doi.org/10.1016/j.rser.2023.113213
  3. Герасимов Г.Я., Хасхачих В.В., Сычев Г.А. и др. // Хим. физика. 2022. Т. 41. № 11. С. 24; https://doi.org/10.31857/S0207401X22110048
  4. Смирнов В.Н., Шубин Г.А., Арутюнов А.В. и др. // Хим. физика. 2022. Т. 41. № 11. С. 52; https://doi.org/10.31857/S0207401X22110115
  5. Van Dyk J.C., Keyser M.J., Coertzen M. // Intern. J. Coal Geol. 2006. V. 65. № 3–4. P. 243; https://doi.org/10.1016/j.coal.2005.05.007
  6. Seed M.A., Williams A.R., Brown D.J., Hirschfelder H. // Proc. Third Intern. Conf. on Clean Coal Technologies for our Future. Cagliari, Italy, 2007.
  7. Motta I.L., Miranda N.T., Filho R.M., Maciel M.R.W. // Renew. Sust. Energ. Rev. 2018. V. 94. P. 998; https://doi.org/10.1016/j.rser.2018.06.042
  8. Кислов В.М., Жолудев А.Ф., Кислов М.Б., Салганский Е.А. // ЖПХ. 2019. Т. 92. № 1. С. 61; https://doi.org/10.1134/S0044461819010080
  9. Asadullah M. // Renew. Sust. Energ. Rev. 2014. V. 40. P. 118; https://doi.org/10.1016/j.rser.2014.07.132
  10. Cortazar M., Santamaria L., Lopez G. et al. // Energy Convers. Manag. 2023. V. 276. ID 116496; https://doi.org/10.1016/j.enconman.2022.116496
  11. Mayerhofer M., Mitsakis P., Meng X. et al. // Fuel. 2012. V. 99. P. 204; https://doi.org/10.1016/j.fuel.2012.04.022
  12. Wolfesberger U., Aigner I., Hofbauer H. // Environ. Prog. Sustain. Energy 2009. V. 28. № 3. P. 372; https://doi.org/10.1002/ep.10387
  13. Knight R.A. // Biomass Bioenerg. 2000. V. 18. № 1. P. 67; https://doi.org/10.1016/S0961-9534(99)00070-7
  14. Valin S., Ravel S., Guillaudeau J., Thiery S. // Fuel Process. Technol. 2010. V. 91. № 10. P. 1222; https://doi.org/10.1016/j.fuproc.2010.04.001
  15. Медведев С.П., Иванцов А.Н., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 12. С. 56;
  16. Tereza A.M., Medvedev S.P., Smirnov V.N. // Acta Astronaut. 2021. V. 181. P. 612; https://doi.org/10.1016/j.actaastro.2020.09.048
  17. Медведев С.П., Максимова О.Г., Черепанова Т.Т. и др. // Хим. физика. 2022. Т. 41. № 11. С. 73; https://doi.org/10.31857/S0207401X22110085
  18. Situmorang Y.A., Zhao Z., Yoshida A., Abudula A., Guan G. // Renew. Sust. Energ. Rev. 2020. V. 117. ID 109 486; https://doi.org/10.1016/j.rser.2019.109486
  19. Janajreh I., Adeyemi I., Raza S.S., Ghenai C. // Ibid. 2021. V. 138. ID 110505; https://doi.org/10.1016/j.rser.2020.110505
  20. Ruiz G., Ripoll N., Fedorova N. et al. // Intern. J. Heat Mass. Transf. 2019. V. 136. P. 383; https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.009
  21. Салганский Е.А., Фурсов В.П., Глазов С.В., Салганская М.В., Манелис Г.Б. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 44.
  22. Манелис Г.Б., Глазов С.В., Лемперт Д.Б., Салганский Е.А. // Изв. АН. Сер. хим. 2011. № 7. С. 1278.
  23. Глазов С.В., Полианчик Е.В. // Теорет. основы хим. технологии. 2019. Т. 53. № 2. С. 152; https://doi.org/10.1134/S0040357119020040
  24. Tabrizi F.F., Mousavi S.A.H.S., Atashi H. // Energy Convers. Manag. 2015. V. 103. P. 1065; https://doi.org/10.1016/j.enconman.2015.07.005
  25. Цветков М.В., Кислов В.М., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 8. С. 93; https://doi.org/10.31857/S0207401X22080143
  26. Трусов Б.Г. // Матер. XIV Междунар. конф. по химической термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
  27. Salgansky E.A., Kislov V.M., Glazov S.V., Salganskaya M.V. // J. Combustion. 2016. ID 9637082; https://doi.org/10.1155/2016/9637082
  28. Kitzler H., Pfeifer C., Hofbauer H. // Fuel Process. Technol. 2011. V. 92. № 5. P. 908; https://doi.org/10.1016/j.fuproc.2010.12.009
  29. Hoang A.T., Huang Z., Nižetić S. et al. // Intern. J. Hydrog. Energy. 2022. V. 47. № 7. P. 4394; https://doi.org/10.1016/j.ijhydene.2021.11.091
  30. Habibollahzade A., Ahmadi P., Rosen M.A. // J. Clean. Prod. 2021. V. 284. ID 124718; https://doi.org/10.1016/j.jclepro.2020.124718

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (285KB)
3.

Baixar (818KB)
4.

Baixar (104KB)

Declaração de direitos autorais © В.М. Кислов, М.В. Цветков, А.Ю. Зайченко, Д.Н. Подлесный, М.В. Салганская, Ю.Ю. Цветкова, Е.А. Салганский, 2023