Mathematical Simulation of the Exothermal Chemical Interaction in a Plug Reactor Containing Emulsion Under the Influence of Gravitational Forces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mathematical models of the dynamic behavior of a multivelocity heterogeneous reacting medium in a plug flow reactor are formulated. The correctness of the mathematical model is studied. A particular analytical solution of the system is obtained, which can be used as a test to check the accuracy of the numerical solution of the model system. The possibility of extending this modeling technique to more complex regimes of exothermic chemical interaction in multivelocity mixed media is shown. A numerical study of the oscillatory regime of the displacement reactor is carried out.

About the authors

K. G. Shkadinskiy

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: kors36@mail.ru
Chernogolovka, Russia

E. N. Shatunova

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: kors36@mail.ru
Chernogolovka, Russia

N. G. Samoilenko

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: kors36@mail.ru
Chernogolovka, Russia

B. L. Korsunskiy

Institute of Problems of Chemical Physics, Russian Academy of Sciences; Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: kors36@mail.ru
Chernogolovka, Russia; Moscow, Russia

References

  1. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987.
  2. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980.
  3. Нигматулин Р.И. Динамика многофазных сред. Ч. 1. М.: Наука, 1987.
  4. Пасконов В.М., Полежаев В.И., Чудов Л.А. Численное моделирование процессов тепло- и массообмена. М.: Наука, 1984.
  5. Fredrick M.D., Unuvar C., Shaw B.D., Munir Z.M. // Combust. and Flame. 2013. V. 160. № 4. P. 843.
  6. Берлин Ал.Ал., Патлажан С.А., Кравченко И.В., Прочухан К.Ю., Прочухан Ю.А. // Хим. физика. 2019. Т. 38. № 1. С. 19.
  7. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 1. С. 77.
  8. Ferguson R.E., Shafirovich E. // Combust. and Flame. 2018. V. 197. P. 22.
  9. Тавадян Л.А., Мартоян Г.А. // Хим. физика. 2021. Т. 40. № 5. С. 36.
  10. Шайтура Н.С., Ларичев М.Н. // Хим. физика. 2020. Т. 39. № 9. С. 18.
  11. Самойленко Н.Г., Шатунова Е.Н., Шкадинский К.Г., Кустова Л.В., Корсунский Б.Л., Берлин А.А. // Хим. физика. 2020. Т. 39. № 11. С. 29.
  12. Шатунова Е.Н., Шкадинский К.Г., Самойленко Н.Г., Корсунский Б.Л. // Хим. физика. 2019. Т. 38. № 4. С. 28.
  13. Matkowsky B.J., Volpert V.A., Aldushin A.P., Shkadinsky K.G., Shkadinskaya G.V. // Self-Propagating High-Temperature Synthesis of Materials / Eds. Borisov A.A., De Luca L.T., Merzhanov A.G. V. 5. Taylor & Francis, 2002. P. 132.
  14. Олейник О.А. // Успехи мат. наук. 1959. Т. XIV. Вып. 2 (86). С. 159.
  15. Шкадинский. К.Г. // Численные методы решения задач математической физики. М.: Наука, 1966. С. 200.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (27KB)
3.

Download (79KB)
4.

Download (52KB)
5.

Download (68KB)

Copyright (c) 2023 К.Г. Шкадинский, Е.Н. Шатунова, Н.Г. Самойленко, Б.Л. Корсунский