Heterogeneity Accounting for the UV-C Radiation Propagation Path Over the Sea
- Authors: Rodionov A.I.1,2, Rodionov I.D.1,2, Rodionova I.P.1,2, Shestakov D.V.1,2, Egorov V.V.3, Shapovalov V.L.1, Kalinin A.P.4
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- AO Scientific and Technical Center Reagent, Moscow, Russia
- Space Research Institute, Russian Academy of Sciences, Moscow, Russia
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
- Issue: Vol 42, No 10 (2023)
- Pages: 96-100
- Section: Химическая физика атмосферных явлений
- URL: https://vestnikugrasu.org/0207-401X/article/view/674823
- DOI: https://doi.org/10.31857/S0207401X23100138
- EDN: https://elibrary.ru/TCNBUQ
- ID: 674823
Cite item
Abstract
The ultraviolet (UV)-C range ensures high noise immunity and the possibility of operating equipment in the troposphere during the daytime, since the ozone layer of the atmosphere almost completely absorbs the UV-C radiation from the Sun. One of the main advantages of this range in comparison with the visible, infrared, and even radio range is the weak scattering of ultraviolet on aerosol particles of dust, snow, hail, water droplets, fog, and rain. In this paper, we propose a method for determining the optical thickness of the atmosphere during the propagation of UV-C radiation along an inclined path over the sea. Accounting for the inhomogeneity of the path of propagation of UV-C radiation is ensured by introducing in the model the dependence of the extinction coefficient and the optical thickness of the atmosphere on altitude. The validity of the proposed model is confirmed by the data of a full-scale experiment conducted over the Black Sea. The extinction coefficient of the atmosphere above the sea surface, as well as its aerosol and molecular components, is determined based on the experimental data.
About the authors
A. I. Rodionov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; AO Scientific and Technical Center Reagent, Moscow, Russia
Email: kalinin@ipmnet.ru
Россия, Москва; Россия, Москва
I. D. Rodionov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; AO Scientific and Technical Center Reagent, Moscow, Russia
Email: kalinin@ipmnet.ru
Россия, Москва; Россия, Москва
I. P. Rodionova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; AO Scientific and Technical Center Reagent, Moscow, Russia
Email: kalinin@ipmnet.ru
Россия, Москва; Россия, Москва
D. V. Shestakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; AO Scientific and Technical Center Reagent, Moscow, Russia
Email: kalinin@ipmnet.ru
Россия, Москва; Россия, Москва
V. V. Egorov
Space Research Institute, Russian Academy of Sciences, Moscow, Russia
Email: kalinin@ipmnet.ru
Россия, Москва
V. L. Shapovalov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: kalinin@ipmnet.ru
Россия, Москва
A. P. Kalinin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
Author for correspondence.
Email: kalinin@ipmnet.ru
Россия, Москва
References
- Непобедимый С.П., Белов А.А., Калинин А.П. и др. // Докл. АН. 2010. Т. 432. № 6. С. 764.
- Белов А.А., Виноградов А.Н., Егоров В.В. и др. // Датчики и системы. 2014. № 1. С. 37.
- Егоров В.В., Калинин А.П., Коровин Н.А. и др. // Датчики и системы. 2016. № 3. С. 40.
- Егоров В.В., Калинин А.П., Родионов А.И. и др. // Соврем. пробл. дистанц. зондирования Земли из космоса. 2020. Т. 17. № 4. С. 51; https://doi.org/10.21046/2070-7401-2020-17-4-51-57
- Виноградов А.Н., Егоров В.В., Калинин А.П. и др. // Датчики и системы. 2015. № 12. С. 29.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 8. С. 26; https://doi.org/10.31857/S0207401X21080069
- Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2022. Т. 41. № 9. С. 26; https://doi.org/10.31857/S0207401X22090047
- Ларин И.К. // Хим. физика. 2023. Т. 41. № 1. С. 84; https://doi.org/10.31857/S0207401X23010077
- Родионов А.И., Родионов И.Д., Родионова И.П. и др. // Хим. физика. 2021. Т. 40. № 10. С. 61; https://doi.org/10.31857/S0207401X21100113
- Родионов И.Д., Родионов А.И., Родионова И.П. и др. // Хим. физика. 2019. Т. 38. № 7. С. 30; https://doi.org/10.1134/S0207401X19070136
- Городничев В.А., Пашенина О.Е., Белов М.Л. и др. // Науч. изд. МГТУ им. Н.Э. Баумана. 2014. № 11. С. 482; https://doi.org/10.7463/1114.0731582
- Белов А.А., Калинин А.П., Крысюк И.В. и др. // Датчики и системы. 2010. № 1. С. 47.
- Белов М.Л., Городничев В.А., Пашенина О.Е. // Науч. изд. МГТУ им. Н.Э. Баумана. 2013. № 8. С. 255; https://doi.org/10.7463/0813.0587120
- Калошин Г.А. // Оптика атмосферы и океана. 2018. Т. 31. № 11. С. 881; https://doi.org/10.15372/AOO20181104
Supplementary files
