Emission of Shock-Heated Air in the Vacuum Ultraviolet Spectral Region
- Authors: Bykova N.G.1, Zabelinskii I.E.1, Kozlov P.V.1, Gerasimov G.Y.1, Levashov V.Y.1
-
Affiliations:
- Institute of Mechanics, Moscow State University, Moscow, Russia
- Issue: Vol 42, No 10 (2023)
- Pages: 34-41
- Section: Combustion, explosion and shock waves
- URL: https://vestnikugrasu.org/0207-401X/article/view/674817
- DOI: https://doi.org/10.31857/S0207401X23100047
- EDN: https://elibrary.ru/ROLBUM
- ID: 674817
Cite item
Abstract
The results of measuring the integral and temporal spectral characteristics of shock-heated air are presented. The experiments are carried out on a modified two-sections SST-M shock tube of the Institute of Mechanics, Moscow State University in shock wave velocities ranging from 7.8 to 10.7 km/s and initial pressures in the low-pressure chamber of 0.125 and 0.25 Torr. The radiation wavelength range 115–195 nm, corresponding to the vacuum ultraviolet (VUV) spectral region, in which the main contribution to the radiation is made by the atomic lines of nitrogen and oxygen, is studied. The obtained radiation spectrograms are analyzed. The measurement data are compared with the available experimental data of other authors.
Keywords
About the authors
N. G. Bykova
Institute of Mechanics, Moscow State University, Moscow, Russia
Email: vyl69@mail.ru
Россия, Москва
I. E. Zabelinskii
Institute of Mechanics, Moscow State University, Moscow, Russia
Email: vyl69@mail.ru
Россия, Москва
P. V. Kozlov
Institute of Mechanics, Moscow State University, Moscow, Russia
Email: vyl69@mail.ru
Россия, Москва
G. Ya. Gerasimov
Institute of Mechanics, Moscow State University, Moscow, Russia
Email: vyl69@mail.ru
Россия, Москва
V. Yu. Levashov
Institute of Mechanics, Moscow State University, Moscow, Russia
Author for correspondence.
Email: vyl69@mail.ru
Россия, Москва
References
- Shang J.S., Surzhikov S.T. // Prog. Aerospace Sci. 2012. V. 53. P. 46.
- Суржиков С.Т. // Хим. физика. 2008. Т. 27. № 10. С. 63.
- Brandis A.M., Johnston C.O., Cruden B.A., Prabhu D., Bose D. // J. Thermophys. Heat Trans. 2015. V. 29. P. 209.
- Kleb B., Johnston C. // AIAA Paper. № 2008-3688.
- Palumbo G., Craig R.A., Whiting E.W., Park C. // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 51. P. 207.
- Герасимов Г.Я., Козлов П.В., Забелинский И.Е., Быкова Н.Г., Левашов В.Ю. // Хим. физика. 2022. Т. 41. № 8. С. 17.
- Cruden B.A., Martinez R., Grinstead J.H., Olejniczak J. // AIAA Paper. № 2009-4240.
- Brandis A.M., Cruden B.A. // AIAA Paper. № 2017-1145.
- Sheikh U.A., Morgan R.G., McIntyre T.J. // AIAA J. 2015. V. 53. P. 3589.
- Быкова Н.Г., Забелинский И.Е., Ибрагимова Л.Б., Козлов П.В., Стовбун С.В., Тереза А.М., Шаталов О.П. // Хим. физика. 2018. Т. 37. № 2. С. 35.
- Забелинский И.Е., Козлов П.В., Акимов Ю.В., Быкова Н.Г., Герасимов Г.Я., Туник Ю.В., Левашов В.Ю. // Хим. физика. 2021. Т. 40. № 11. С. 22.
- Kozlov P.V., Zabelinsky I.E., Bykova N.G., Gerasimov G.Ya., Levashov V.Yu., Tunik Yu.V. // Acta Astronaut. 2022. V. 194. P. 461.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г., Акимов Ю.В., Левашов В.Ю., Герасимов Г.Я., Тереза А.М. // Хим. физика. 2022. Т. 41. № 9. С. 26.
- NIST Atomic Spectra Database, Ver. 5.10. Gaithersburg: NIST, 2022; https://doi.org/10.18434/T4W30F
- Kazakov V.V., Kazakov V.G., Kovalev V.S., Meshkov O.I., Yatsenko A.S. // Phys. Scr. 2017. V. 92. № 105002.
- Jung Y.-D., Kim C.-G. // J. Plasma Phys. 2002. V. 67. P. 191.
- Tibère-Inglesse A, Cruden B.A. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 290. № 108302.
- Johnston C.O., Kleb B. // J. Spacecraft Rockets. 2012. V. 49. P. 425.
- Han J., Park W., Kim J. et al. // Current Appl. Phys. 2021. V. 31. P. 208.
- Han D., Park J., Kim Y., Kwon D., Park S. // Ibid. P. 239.
- Суржиков С.Т. // Теплофизика высоких температур. 2016. Т. 54. № 2. С. 249.
- Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я., Левашов В.Ю. // Изв. РАН. МЖГ. 2022. № 6. С. 85.
Supplementary files
