ФРАГМЕНТАЦИЯ МОЛЕКУЛ АДЕНИНА ПРИ ВЗАИМОДЕЙСТВИИ С ИОНАМИ
- Authors: Basalaev A.A.1, Kuz’michev V.V.1, Panov M.N.1, Simon K.V.1, Smirnov O.V.1
-
Affiliations:
- Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Issue: Vol 42, No 10 (2023)
- Pages: 16-25
- Section: Элементарные физико-химические процессы
- URL: https://vestnikugrasu.org/0207-401X/article/view/674815
- DOI: https://doi.org/10.31857/S0207401X23100035
- EDN: https://elibrary.ru/RMPETI
- ID: 674815
Cite item
Abstract
The mechanism of the fragmentation processes of adenine ions (Ade, C5H5N5) occurring during the interaction of molecules in the gas phase with ions energies of the order of keV is studied. The relative cross sections of various elementary processes occurring in single collisions of ions with molecules are measured. The channels of the fragmentation processes of singly charged Ade+ ions are experimentally studied. The complete active space self-consistent field (CASSCF) method is used to calculate the geometry of the molecules and singly charged Ade+ ions, as well as the reaction paths of the main experimentally observed fragmentation channels of these ions.
About the authors
A. A. Basalaev
Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email: a.basalaev@mail.ioffe.ru
Россия, Санкт-Петербург
V. V. Kuz’michev
Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email: a.basalaev@mail.ioffe.ru
Россия, Санкт-Петербург
M. N. Panov
Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email: a.basalaev@mail.ioffe.ru
Россия, Санкт-Петербург
K. V. Simon
Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email: a.basalaev@mail.ioffe.ru
Россия, Санкт-Петербург
O. V. Smirnov
Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Author for correspondence.
Email: a.basalaev@mail.ioffe.ru
Россия, Санкт-Петербург
References
- Lin J., Yu C., Peng S. I. Akiyama et al. // J. Amer. Chem. Soc. 1980. V. 102. P. 4627.
- Urano S., Yang X., LeBreton P.R. // J. Mol. Struct. 1989. V. 214. P. 315.
- Jochims H.-W., Schwell M., Baumgärtel H. et al. // Chem. Phys. 2005. V. 314. № 1–3. P. 263; https://doi.org/10.1016/j.chemphys.2005.03.008
- Pilling S., Lago A.F., Coutinho L.H. et al. // Rapid Commun. Mass Spectrom. 2007. V. 21. № 22. P. 3646; https://doi.org/10.1002/rcm.3259
- Trofimov A.B., Schirmer J., Kobychev V.B. et al. // J. Phys. B: At. Mol. Opt. Phys. 2006. V. 39. № 2. P. 305; https://doi.org/10.1088/0953-4075/39/2/007
- Sethi S.K., Gupta S.P., Jenkins E.E.J. et al. // Amer. Chem. Soc. 1982. V. 104. № 12. P. 3349.
- Minaev B.F., Shafranyosh M.I., Svida Yu.Yu. et al. // J. Chem. Phys. 2014. V. 140. № 17. P. 175101; https://doi.org/10.1063/1.4871881
- Dawley M.M., Tanze K., Cantrell P. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 45. P. 25039; doi.org/https://doi.org/10.1039/C4CP03452J
- Rahman M.A., Krishnakumar E. // J. Chem. Phys. 2016. V. 144. № 16. P. 161102; https://doi.org/10.1063/1.4948412
- Van der Burgt P.J.M., Finnegan S., Eden S. // Eur. Phys. J. D. 2015. V. 69. P. 173; https://doi.org/10.1140/epjd/e2015-60200-y
- Дьяков Ю.А., Пузанков А.А., Адамсон С.О. и др. // Хим. физика. 2020. Т. 39. № 10. С. 3; https://doi.org/10.31857/S0207401X20100040
- Bernard J., Brédy R., Chen L. et al. // Nucl. Instrum. Methods. Phys. Res. B. 2006. V. 245. № 1. P. 103; https://doi.org/10.1016/j.nimb.2005.11.086
- Alvarado F., Bari S., Hoekstra R., Schlathölter T. et al. // J. Chem. Phys. 2007. V. 127. № 3. P. 034301.
- Martin S., Brédy R., Allouche A.R. et al. // Phys. Rev. A. 2008. V. 77. P. 062513; https://doi.org/10.1103/PhysRevA.77.062513
- Montagne G., Bernard J., Martin S. et al. // J. Phys. B: At. Mol. Opt. Phys. 2009. V. 42. № 7. 075204; https://doi.org/10.1088/0953-4075/42/7/075204
- Tabet J., Eden S., Feil S. et al. // Intern. J. Mass Spectrom. 2010. V. 292. № 1. P. 53; https://doi.org/10.1016/j.ijms.2010.03.002
- Афросимов В.В., Басалаев А.А., Морозов Ю.Г. и др. // ЖТФ. 2012. Т. 82. № 5. С. 16.
- De Vries M.S., Hobza P. // Annu. Rev. Phys. Chem. 2007. V. 58. P. 585; https://doi.org/10.1146/annurev.physchem.57.032905.104722
- Fuss M., Muñoz A., Oller J.C. et al. // Phys. Rev. A.: At. Mol. Opt. Phys. 2009. V. 80. № 5. 052709; https://doi.org/10.1103/PhysRevA.80.052709
- Басалаев А.А., Кузьмичев В.В., Панов М.Н. и др. // ЖТФ. 2022. Т. 92. № 7. С. 978; https://doi.org/10.21883/JTF.2022.07.52654.309-21
- Басалаев А.А., Кузьмичев В.В., Панов М.Н. и др. // Письма в ЖТФ. 2022. Т. 48. № 17. С. 13; https://doi.org/10.21883/PJTF.2022.17.53280.19238
- Basalaev A.A., Kuz’michev V.V., Panov M.N. et al. // Radiat. Phys. Chem. 2022. V. 193. № 4. P. 109984; https://doi.org/10.1016/j.radphyschem.2022.109984
- Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. № 15. Article 154102.
- Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2021. Т. 40. № 10. С. 22; https://doi.org/10.31857/S0207401X21100034
- Дьяков Ю.А., Адамсон С.О., Ванг П.К. и др. // Хим. физика. 2022. Т. 41. № 6. С. 85; https://doi.org/10.31857/S0207401X22060036
- Храпковский Г.М., Аристов И.В., Егорова Д.Л. и др. // Хим. физика. 2022. Т. 41. № 9. С. 19; https://doi.org/10.31857/S0207401X22070068
- Schmidt M.W., Gordon M.S. // Annu. Rev. Phys. Chem. 1998. V. 49. P. 233.
- Bode B.M., Gordon M.S. // J. Mol. Graph. Model. 1998. V. 16. № 3. P. 133.
- Improta R., Scalmani G., Barone V. // Intern. J. Mass Spectrom. 2000. V. 201. P. 321.
- NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101. 2022; https://doi.org/10.18434/T47C7Z
- Басалаев А.А, Панов М.Н. // ЖТФ. 2019. Т. 89. № 3. С. 342; https://doi.org/10.21883/JTF.2019.03.47166.299-18
- Mass Spectrum Interpreter Version 2; https://chemdata.nist.gov/mass-spc/interpreter/
- NIST Chemistry WebBook. NIST Standard Reference Database Number 69; https://doi.org/10.18434/T4D303
Supplementary files
