Acoustic emission location of defects by analytical and tabular methods during static loading the composite caisson of the aircraft wing
- 作者: Stepanova L.N.1, Ramazanov I.S.1, Kabanov S.I.1, Chernova V.V.2
-
隶属关系:
- FAI «Siberian Aeronautical Research Institute named after S. A. Chaplygin»
- The Siberian Transport University (STU)
- 期: 编号 5 (2025)
- 页面: 29-39
- 栏目: Acoustic methods
- URL: https://vestnikugrasu.org/0130-3082/article/view/684111
- DOI: https://doi.org/10.31857/S0130308225050034
- ID: 684111
如何引用文章
详细
The article presents the results of acoustic emission testing of an aircraft wing box made of composite material ACM 102 130 C UD. The load was changed in steps with a step of 10 % of its maximum value. Before loading, the control zones consisting of four piezoelectric transducers of acoustic emission were calibrated. In order to reduce the influence of anisotropy and design features of the wing box on the errors in defect location, a new technique consisting of analytical and tabular methods was developed. In the analytical method, the coordinates of defects were calculated using three sensors of the piezoantenna, and the location error included random and systematic components. Inaccurate determination of the difference in the times of signal arrival at the sensors of the piezoantenna was the main source of the random component of the error. The complexity of the design influenced the appearance of the systematic error. At the same time, the features of the test object hampered the rectilinear propagation of the sound wave. When using the tabular method, the caisson structure was divided into a number of zones and the matrix of correspondence between the difference in signal arrival times and the coordinates of the selected cells was calculated. It was shown that the number of signals localized using the tabular method was bigger than that using the analytical method. Practical application of the developed location method showed that the average value of the reduced error decreased two fold when calculating the X coordinate and six fold when calculating the Y coordinate. This made it possible to reduce the location errors associated with the location of the calibration points on the structure. If the signal location error exceeded the permissible value determined by the cell size, they were excluded from further consideration as not localized.
作者简介
Ludmila Stepanova
FAI «Siberian Aeronautical Research Institute named after S. A. Chaplygin»
Email: akustika2063@yandex.ru
ORCID iD: 0000-0003-1073-8394
SPIN 代码: 5729-8175
Scopus 作者 ID: 494819
俄罗斯联邦, 630051 Novosibirsk, Polzunova str., 21
Ilya Ramazanov
FAI «Siberian Aeronautical Research Institute named after S. A. Chaplygin»
Email: akustika2063@yandex.ru
Scopus 作者 ID: 143416
俄罗斯联邦, 630051 Novosibirsk, Polzunova str., 21
Sergey Kabanov
FAI «Siberian Aeronautical Research Institute named after S. A. Chaplygin»
Email: akustika2063@yandex.ru
ORCID iD: 0000-0002-6842-5772
SPIN 代码: 3495-0596
Scopus 作者 ID: 333642
俄罗斯联邦, 630051 Novosibirsk, Polzunova str., 21
Valentina Chernova
The Siberian Transport University (STU)
编辑信件的主要联系方式.
Email: akustika2063@yandex.ru
ORCID iD: 0000-0002-2701-1522
SPIN 代码: 6035-3730
Scopus 作者 ID: 753280
俄罗斯联邦, 630049 Novosibirsk, D. Kovalchuc str., 191
参考
- Sereznov A.N., Stepanova L.N., Lebedev E.Y., Kabanov S.I. Use of microprocessor acoustic emission systems during aircraft endurance testing // Defectoskopiya. 2013. No. 8. P. 35—42.
- Savin S. Application of modern polymeric composite materials in the design of MS-21 airplane family // Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2012. V. 14. No. 4 (2). P. 686—693.
- Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of technology and polymer composite materials for the manufacture of wings of advanced aircraft (review) // Proceedings of VIAM. 2022. No. 1(107). P. 66—75. doi: 10.18577/2307-6046-2022-0-1-66-75
- Popov A.V., Samuylov A.O., Cherepanov I.S. Application and evaluation of the technical condition of composite materials in aircraft and unmanned aerial vehicles by acoustic emission method of nondestructive testing // Advanced Engineering Research. 2021. V. 21. No. 4. P. 328—336. https://doi.org/10.23947/2687-1653-2021-21-4-328-336
- Kolobkov A.S. Polymer composite materials for various aircraft structures (review) // Proceedings of VIAM. 2020. No. 6—7. P. 38—44. doi: 10.18577/2307-6046-2020-0-67-38-44
- Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review) // Aviation Materials and Technologies. 2023. No. 2 (71). P. 122—144. doi: 10.18577/2713-0193-2023-0-2-122-144
- Kalenov V.V., Savitsky R.S., Barannikov A.A. Study of the mechanical properties of three-layer panels with different types of honeycomb filler splicing // Proceedings of VIAM. 2024. № 9. P. 33—41. doi: 10.18577/2307-6046-2024-0-9-33-41
- Sereznov A.N., Stepanova L.N., Kabanov S.I., Ramazanov I.S., Chernova V.V. Acoustic emission testing of aircraft materials and structures made of carbon fiber reinforced plastics. Novosibirsk: Nauka, 2024. 288 p.
- Sereznov A.N., Stepanova L.N., Kabanov S.I., Chernova V.V., Kuznetsov A.B. Acoustic Emission Control of Defects in the Aircraft wing Attachment Zone in Flight // Kontrol’. Diagnostika. 2024. V. 27 (6). P. 18—27. doi: 10.14489/td.2024.06.pp.018-027
- Lehmann M., Bueter A., Schwarzaupt O. Structural health monitoring of composite aero-space structures with acoustic emission // Journal of Acoustic Emission. 2018. V. 35. P. 172—193.
- Barsuk V.E., Sereznov A.N., Stepanova L.N., Chernova V.V. Acoustic emission control of the wing box defects of a carbon-fiber aircraft wing in the process of static and impact loadings // Flight. 2019. No. 5. P. 17—24.
- Leshukova I.V. Fundamental technologies for manufacturing aircraft structures from composite materials: RTM and autoclave molding // International scientific journal “Innovative Science”. 2018. No. 1. P. 14—16.
- Veshkin E.A., Semenychev V.V., Kirillin S.G., Istyagin S.E. Investigation of acoustic emission signals and microhardness of the matrix in the samples from unidirective carbon fiber // Proceedings of VIAM. 2023. No. 6. P. 63—71. doi: 10.18577/2307-6046-2023-0-6-63-71
- Sereznov A.N., Stepanova L.N., Kabanov S.I., Kareev A.E., Lebedev E.Yu., Kozhemyakin V.L., Ramazanov I.S., Kharlamov B.M. Acoustic emission testing of aircraft structures. M.: Mechanical Engineering / Machine Engineering—Flight, 2008. 440 p.
- Matvienko Y.G., Vasil’ev I.E., Chernov D.V., Ivanov V.I., Mishchenko I.V. Error reduction in determining the wave-packet speed in composite materials // Instruments and Experimental Techniques. 2020. V. 63. No. 1. P. 106—111. doi: 10.31857/S0032816220010231
- Holroyd T.J., Meisuria H.M., Lin Holroyd T.J. Development of practical acoustic emission — based structural monitoring system // Insight. 2003. V. 45. No. 2. P. 127—129.
- Sause Markus G.R. On use of signal features for acoustic emission souse identification in fibre-reinforced composites // J. Acoustic Emission. 2018. V. 35. P. 125—136.
- Stepanova L.N., Chernova V.V., Kabanov S.I. Analysis of the destruction processes of carbon fiber samples using acoustic emission and tensometry // Defectoskopiya. 2023. № 7. P. 3—13. doi: 10.31857/S0130308223070011
- Sudha J., Sampathkumar S., Kumar R. Condition monitoring of delamination during drilling of GFRP composites using acoustic emission technique — a neural model // Insight. 2011. V. 53. No. 8. P. 445—449.
- Madaras E.I., Prosser W.H., Studor G., Gorman M.R., Ziola S.M. Structural Health Monitoring of the Space Shuttle's Wing Leading Edge // AIP Conf. Proc. 6 March 2006. V. 820 (1). P. 1756—1763. https://doi.org/10.1063/1.2184733
- Walles J.M., Saulsberry R.L., Andrade E. Use of Acoustic Emission to monitor progressive damage accumulation in Kevlar 49 composites / NASA. Johnson Space Center. Houston. JSC-CN-18563. 2009.
- Matvienko Y.G., Vasil’ev I.E., Chernov D.V., Ivanov V.I., Elizarov S.V. Problems of locating acoustic emission sources // Defectoskopiya. 2021. No. 9. P. 35—44. doi: 10.31857/S0130308221090049
- Matvienko Y.G., Vasiliev I.E., Balandin T.D., Chernov D.V. Features of planar localization of acoustic emission sources via the INGLADA’s triangulation algorithm // Defectoskopiya. 2024. No. 12. P. 3—13. doi: 10.31857/S0130308224120011
- Sereznov A.N., Stepanova L.N., Muravyov V.V., Komarov K.L., Kabanov S.I., Lebedeva E.Yu., Kozhemyakin V.L., Pankov A.F. Acoustic emission diagnostics of structures. M.: Radio and communication, 2000. 280 p.
- Stepanova L.N., Chernova V.V., Kabanov S.I. Analysis of the mode composition of the acoustic emission signals with simultaneous thermal and static loading of specimens of carbon fiber T800 // Kontrol’. Diagnostika. 2018. No. 11. P. 4—13. doi: 10.14489/td.2018.11.pp.004–013
- Aljets D. Acoustic emission source location in composite aircraft structures using modal analysis. University of Glamorgan, 2011. 163 p.
- Stepanova L.N., Tenitilov E.S. Localization of acoustic-emission sources in objects with small geometric dimensions // Defectoskopiya. 2012. № 8. P. 47—51.
补充文件
