Asymptotics of an Ultrasonic Sounding Field in Anisotropic Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To model the wave field of an ultrasonic transducer in materials with strong anisotropy (monocrystalline alloys of turbine blades, composite materials, welded joints, etc.), a physically descriptive asymptotic representation is obtained for quasi-spherical body waves excited by a surface source in an arbitrarily anisotropic elastic half-space. The asymptotics is derived by the stationary phase method from the integral representation of the solution in terms of contour integrals of the inverse Fourier transform. The peculiarities of their derivation and numerical implementation are discussed on the examples of a transversely isotropic composite material and a monocrystalline nickel alloy with cubic anisotropy. The dependence of the stationary points on the direction is more complicated here than in the isotropic case, up to the appearance of multiple stationary points and folds, giving rise to additional wave fronts and caustics. A comparison is made with the plane waves described by eigensolutions of the classical Christoffel equation. It is shown that, despite the phenomenon of multiple wave fronts, varying the plane-wave orientation allows us to obtain the same group velocity vectors as for any of the waves described by the asymptotics.

Full Text

Restricted Access

About the authors

Evgeny V. Glushkov

Kuban State University

Author for correspondence.
Email: evg@math.kubsu.ru
Russian Federation, 149, Stavropolskaya St., Krasnodar, 350040

Natalia V. Glushkova

Kuban State University

Email: nvg@math.kubsu.ru
Russian Federation, 149, Stavropolskaya St., Krasnodar, 350040

References

  1. Lane C. Wave Propagation in Anisotropic Media / In: The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer Theses. Cham: Springer. 2014. https://doi.org/10.1007/978-3-319-02517-9_2
  2. Pyankov V.A., Pyankov I.N. Acoustic methods of control of blades of gas turbine engines // V Mire NK. 2019. V. 22. No. 1 (83). P. 36—44 (in Russian).
  3. Morokov E., Titov S., Levin V. In situ high-resolution ultrasonic visualization of damage evolution in the volume of quasiisotropic CFRP laminates under tension // Composites Part B Engineering. 2022. V. 247. P. 110360. http://dx.doi.org/10.1016/j.compositesb.2022.110360
  4. Levin V., Petronyuk Y., Artyukov I., Bukreeva I., Malykhin A., Longo E., D’Amico L., Giannoukos K., Tromba G. Three-Dimensional Study of Polymer Composite Destruction in the Early Stages // Polymers. 2023. V. 15. P. 276. https://doi.org/10.3390/polym15020276
  5. Bazulin E.G. Allowing for inhomogeneous anisotropy of a welded joint when reconstructing reflector images from echo signals received by an ultrasonic antenna array // Defectoscopiya. 2017. No. 1. P. 11—25. https://doi.org/10.1134/S1061830917010028
  6. Kalkowski M.K., Lowe M.J.S., Samaitis V., Schreyer F., Robert S. Weld map tomography for determining local grain orientations from ultrasound // Proc. R. Soc. A. 2023. V. 479. P. 20230236. https://doi.org/10.1098/rspa.2023.0236
  7. Musgrave M.J.P. The propagation of elastic waves in crystals and other anisotropic media // Reports. Prog. in Phys. 1959. V. 22. P. 74—96. https://doi.org/10.1088/0034-4885/22/1/303
  8. Buchwald V.T. Elastic Waves in Anisotropic Media // Proc. Royal Soc. London. Series A, Math. and Phys. Sciences. 1959. V. 253. No. 1275. P. 563—580. http://www.jstor.org/stable/100706 Accessed 23 March 2024.
  9. Merkulov L.G., Yakovlev L.A. Some features of propagation and reflection of ultrasound in monocrystals // Sov. Phys. Acoust. (USA). 1962. V. 8. No. 1. P. 99—106. http://www.akzh.ru/pdf/1962_1_99-106.pdf
  10. Merkulov L.G. Ultrasonic waves in crystals // Appl. Mater. Res. 1963. V. 2. P. 231—240.
  11. Fedorov F.I. Theory of elastic waves in crystals. Moscow: Nauka, 1965. 388 p. (in Russian).
  12. Auld B.A. Acoustic fields and waves in solids. New York: Wiley, 1973. 423 p.
  13. Petrashen G.I. Wave propagation in anisotropic elastic media. Leningrad: Nauka, 1980, 280 p. (In Russian). https://www.libex.ru/detail/book111023.html
  14. Chadwick P. Wave propagation in transversely isotropic elastic media. I. Homogeneous plane waves // Proc. Roy. Soc. Lond. 1989. V. 422. P. 23—66. https://www.jstor.org/stable/2398523
  15. Alshits V.I., Lothe J. Some basic properties of bulk elastic waves in anisotropic media // Wave Motion. 2004. V. 40. P. 297—313. https://doi.org/10.1016/j.wavemoti.2004.02.004
  16. Babich V.M., Kiselev A.P. Elastic waves. High-frequency theory. St. Petersburg: BHV-Peterburg, 2014. 320 p. (in Russian).
  17. Wu K., Nagy P.B., Adler L. Far field radiation of a point source on the free surface of semi-infinite anisotropic solids / In: Review of Progress in Quantitative Nondestructive Evaluation. Eds. D.O. Thompson, D.E. Chimenti. N.Y.: Plenum Press, 1990. V. 9. P. 149—156.
  18. Wu K., Nagy P.B., Adler L. Far-field radiation of a vibrating point source in anisotropic media // J. Nondestruct. Eval. 1991. V. 10. P. 71—78. https://doi.org/10.1007/BF00568102
  19. Vorovich I.I., Babeshko V.A. Dynamic mixed problems of elasticity for non-classical domains. Moscow: Nauka, 1979. 320 p. (In Russian).
  20. Babeshko V.A., Glushkov E.V., Glushkova N.V. Analysis of wave fields generated in a stratified elastic half-space by surface sources // Sov. Phys. Acoust. (USA). 1986. V. 32. No. 3. P. 223—226. http://www.akzh.ru/pdf/1986_3_366-371.pdf
  21. Glushkov Ye.V., Glushkova N.V., Krivonos A.S. The excitation and propagation of elastic waves in multilayered anisotropic composites // Journal of Applied Mathematics and Mechanics. 2010. V. 74. P. 297—305.
  22. Glushkov E., Glushkova N., Eremin A. Forced wave propagation and energy distribution in anisotropic laminate composites // J. Acoust. Soc. Am. 2011. V. 129 (5). P. 2923—2934. http://dx.doi.org/10.1121/1.3559699
  23. Glushkov E.V., Glushkova N.V. Elastic waves in anisotropic materials / Proceedings of the XXXV Session of the Russian Acoustic Society. Moscow: GEOS Publisher, 2023. P. 942—946 (in Russian). https://doi.org/10.34756/GEOS.2023.17.38421
  24. Glushkov E.V., Glushkova N.V., Kiselev O.N. Body wave asymptotics for an anisotropic elastic half-space with a surface source / 2023 Days on Diffraction (DD). St. Petersburg. Russian Federation. 2023. P. 78—82. https://doi.org/10.1109/DD58728.2023.10325771
  25. Glushkov E.V., Glushkova N.V., Tatarkin A.A., Ermolenko O.A. Modeling of reflected ultrasonic fields in composed samples // Defectoskopiya. 2024. No. 11. P. 3—14. https://doi.org/10.31857/S0130308224110014
  26. Sveshnikov A.G. The principle of limiting absorption for a waveguide // Dokl. Akad. Nauk SSSR. 1951. V. 80. No. 3. P. 345—347 (in Russian).
  27. Glushkov E.V., Syromyatnikov P.V. Analysis of wave fields excited by a surface harmonic source in an anisotropic half-space, Manuscript submitted by Kuban State University, Dep. in VINITI 07.08.85. No. 5861-85, Krasnodar, 1985. 11 p. (In Russian).
  28. Tolstoy I., Usdin E. Wave propagation in elastic plates: low and high mode dispersion // J. Acoust. Soc. Am. 1957. V. 29. P. 37—42. https://doi.org/10.1121/1.1908675
  29. Burlii P.V., Kucherov I.Ya. Inverse elastic waves in plates // Letters in ZhETF. 1977. V. 26. No. 9. P. 644—647 (in Russian). https://journals.ioffe.ru/issues/722
  30. Fedoryuk M.V. Metod perevala (The Saddle-Point Method). Moscow: Nauka, 1977 (in Russian).
  31. Wang L., Yuan F.G. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments // Compos. Sci. Technol. 2007. V. 67 (8). P. 1370—1384. https://doi.org/10.1016/j.compscitech.2006.09.023
  32. Preslyak M.Yu. Investigation of features and calculation of wave surface cross sections in anisotropic elastic medium // Akust. Zhurn. 1981. V. 27. No. 2. P. 291—295. (In Russian). http://www.akzh.ru/pdf/1981_2_291-295.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the problem.

Download (122KB)
3. Fig. 2. Schematic illustration of the dependence of the position of stationary points on the angle θ in the isotropic (a) and anisotropic (b) cases.

Download (116KB)
4. Fig. 3. Surfaces σ^n (top) and their projections on the (β1, β2) plane (bottom) for the GE transversal-isotropic composite material.

Download (455KB)
5. Fig. 4. The same as in Fig. 3, but for nickel alloy NS with cubic anisotropy.

Download (525KB)
6. Fig. 5. Motion of stationary points in regions D2 and D3 when the angle θ changes from 0 (large markers) to 0.45π; φ = 0, NS material.

Download (458KB)
7. Fig. 6. Dependence of the group velocity vn of quasi-spherical waves (10) on θ at φ = 0, NS material; marker-circles show the values plotted below in Fig. 7d.

Download (158KB)
8. Fig. 7. Dependence of the phase velocity cn (a), group velocity vn (b), and guiding angle θV of the group velocity vector of plane waves on the front orientation angle θ at φ = 0 (c); group velocities vn as a function of θV (d); marker-circles show those taken from Fig. 7. 6 group velocities of quasi-spherical waves (10) for three directions θ / π = 0, 0.2 and 0.4, φ = 0; material NS.

Download (337KB)
9. Fig. 8. Directional diagrams (dependences of |anm| on θ at φ = 0) for quasi-spherical waves excited by vertical (top, a-b) and tangential (bottom, d-e) concentrated loads.

Download (384KB)

Copyright (c) 2025 Russian Academy of Sciences