Phase equilibria, crystal structure and oxygen nonstoichiometry of complex oxides formed in the system GdCoO3–SrCoO3–δ–SrFeO3–δ–GdFeO3
- Авторлар: Aksenova Т.V.1, Solomakhina E.E.1, Urusova A.S.1, Cherepanov V.A.1
-
Мекемелер:
- Yeltsin Ural Federal University
- Шығарылым: Том 69, № 7 (2024)
- Беттер: 1052-1062
- Бөлім: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://vestnikugrasu.org/0044-457X/article/view/666476
- DOI: https://doi.org/10.31857/S0044457X24070142
- EDN: https://elibrary.ru/XNGEUJ
- ID: 666476
Дәйексөз келтіру
Аннотация
The phase equilibria in the quasi-quaternary GdCoO3–SrCoO3–δ–SrFeO3–δ–GdFeO3 system have been studied at 1373 K in air. The homogeneity ranges and crystal structure of solid solutions of general composition Gd1–xSrxCo1–yFeyO3–δ have been determined. Depending on the concentration of introduced strontium and iron, the Gd1–xSrxCo1–yFeyO3–δ oxides crystallize in orthorhombic (x = 0.1 and 0.4 ≤ y ≤ 1.0; x = 0.2 and y = 0.9, sp. gr. Pbnm), tetragonal (0.6 ≤ x ≤ 0.8 and 0.1 ≤ y ≤ 0.5, sp. gr. I4/mmm) or cubic (x = 0.9 and 0.1 ≤ y ≤ 0.9; 0.6 ≤ x ≤ 0.8 and 0.6 ≤ y ≤ 0.9, sp. gr. Pm-3m) perovskite structure. Structural parameters were determined for all single-phase samples. An increase in the concentration of strontium and iron leads to an increase in the unit cell parameters of the Gd1–xSrxCo1–yFeyO3–δ oxides. It has been shown that the oxygen content in Gd1–xSrxCo1–yFeyO3–δ cobaltites, determined by thermogravimetric analysis, decreases with increasing temperature and strontium content in the samples. An isobaric-isothermal phase diagram of the GdCoO3 – SrCoO3–δ–SrFeO3–δ–GdFeO3 system at 1373 K in air was constructed.
Толық мәтін

Авторлар туралы
Т. Aksenova
Yeltsin Ural Federal University
Хат алмасуға жауапты Автор.
Email: TV.Aksenova@urfu.ru
Ресей, Ekaterinburg, 620002
E. Solomakhina
Yeltsin Ural Federal University
Email: TV.Aksenova@urfu.ru
Ресей, Ekaterinburg, 620002
A. Urusova
Yeltsin Ural Federal University
Email: TV.Aksenova@urfu.ru
Ресей, Ekaterinburg, 620002
V. Cherepanov
Yeltsin Ural Federal University
Email: TV.Aksenova@urfu.ru
Ресей, Ekaterinburg, 620002
Әдебиет тізімі
- Клындюк А.И., Журавлева Я.Ю., Гундилович Н.Н. и др. // Неорган. материалы. 2023. Т. 59. № 1. С. 88. https://doi.org/10.31857/S0002337X23010086
- Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1359. https://doi.org/10.31857/S0044457X22600736
- Клындюк А.И., Журавлева Я.Ю. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1874. https://doi.org/10.31857/S0044457X22600669
- Калинина М.В., Дюскина Д.А., Полякова И.Г. и др. // Физика и химия стекла. 2023. Т. 49. № 2. С. 158. https://doi.org/10.31857/S013266512260087X
- Чижова Е.А., Клындюк А.И., Журавлева Я.Ю. и др. // Физика и химия стекла. 2023. Т. 49. № 1. С. 71. https://doi.org/10.31857/S0132665122600200
- Fan H., Liu Z., Wu Y. et al. // Int. J. Appl. Ceram. Technol. 2023. V. 21. № 1. P. 289. https://doi.org/10.1111/ijac.14490
- Lee K.T., Manthiram A. // J. Electrochem. Soc. 2006. V. 153. № 4. P. A794. https://doi.org/10.1149/1.2172572
- Lee K.T., Manthiram A. // J. Electrochem. Soc. 2005. V. 152. № 1. P. A197. https://doi.org/10.1149/1.1828243
- Rossignol C., Ralph J.M., Bae J.-M. et al. // Solid State Ionics. 2004. V. 175. № 1–4. P. 59. https://doi.org/10.1016/j.ssi.2004.09.021
- Takeda Y., Ueno H., Imanishi N. et al. // Solid State Ionics. 1996. V. 86–88. P. 1187. https://doi.org/10.1016/0167-2738(96)00285-8
- Ni Q., Chen H., Ge L. et al. // J. Power Sources. 2017. V. 349. P. 130. https://doi.org/10.1016/j.jpowsour.2017.03.037
- Tong X., Ovtar S., Brodersen K. et al. // J. Power Sources. 2020. V. 451. P. 227742. https://doi.org/10.1016/j.jpowsour.2020.227742
- Madathil R.K., Norby T. // Solid State Sci. 2022. V. 124. P. 106801. https://doi.org/10.1016/j.solidstatesciences.2021.106801
- Конончук О.Ф., Петров А.Н., Черепанов В.А. // Изв. АН СССР. Неорган. материалы. 1991. Т. 27. № 9. С. 1963.
- Vereshchagin S.N., Solovyov L.A., Rabchevskii E.V. et al. // Chem. Commun. 2014. V. 50. P. 6112. https://doi.org/10.1039/c4cc00913d
- Tealdi C., Saiful Islam M., Fisher C. et al. // Prog. Solid State Chem. 2007. V. 35. P. 491. https://doi.org/10.1016/j.progsolidstchem.2007.01.015
- Wang X., Huang K., Ma W. et al. // Chem. Eur. J. 2017. V. 23. P. 1093. https://doi.org/10.1002/chem.201604065
- Liu H., Guo Y., Xie R. et al. // Sens. Actuators, B. 2017. V. 246. P. 164. https://doi.org/10.1016/j.snb.2017.02.072
- He J., Sunarso J., Miao J. et al. // J. Hazardous Mater. 2019. V. 369. P. 699. https://doi.org/10.1016/j.jhazmat.2019.02.070
- Li T., Jayathilake R.S., Taylor D.D. et al. // Chem. Commun. 2019. V. 55. P. 4929. https://doi.org/10.1039/C8CC09573F
- Dudnikov V.A., Orlov Y.S., Kazak N.V. et al. // Ceram. Int. 2019. V. 45. № 5. P. 5553. https://doi.org/10.1016/j.ceramint.2018.12.013
- Reis M.S., Rocco D.L., Caraballo Vivas R.J. et al. // J. Magn. Magn. Mater. 2017. V. 422. P. 197. https://doi.org/10.1016/j.jmmm.2016.08.080
- Ryu K.H., Roh K.S., Lee S.J. et al. // J. Solid State Chem. 1993. V. 105. № 2. P. 550. https://doi.org/10.1006/jssc.1993.1247
- Zhang L., Li X., Wang F. et al. // Mater. Res. Bull. 2013. V. 48. P. 1088. https://doi.org/10.1016/j.materresbull.2012.11.105
- Long P.T., Manh Т.V., Ho T.A. et al. // Ceram. Int. 2018. V. 44. P. 15542. https://doi.org/10.1016/j.ceramint.2018.05.216
- James M., Cassidy D., Goossens D.J. et al. // J. Solid State Chem. 2004. V. 177. № 6. P. 1886. https://doi.org/10.1016/j.jssc.2004.01.012
- Alhokbany N., Almotairi S., Ahmed J. et al. // J. King Saud Univer. Sci. 2021. V. 33. P. 101419. https://doi.org/10.1016/j.jksus.2021.101419
- Petrov A.N., Kononchuk O.F., Andreev A.V. et al. // Solid State Ionics. 1995. V. 80. P. 189. https://doi.org/10.1016/0167-2738(95)00114-l
- Cherepanov V.A., Gavrilova L.Ya., Barkhatova L.Yu. et al. // Ionics. 1998. V. 4. № 3–4. P. 309. https://doi.org/10.1007/BF02375959
- James M., Tedesco T., Cassidy D.J. et al. // Mater. Res. Bull. 2005. V. 40. P. 990. https://doi.org/10.1016/j.materresbull.2005.02.020
- Park S., Choi S., Shin J. et al. // J. Power Sources. 2012. V. 210. P. 172. https://doi.org/10.1016/j.jpowsour.2012.03.018
- Aksenova Т.V., Efimova T.G., Lebedev O.I. et al. // J. Solid State Chem. 2017. V. 248. P. 183. https://doi.org/10.1016/j.jssc.2017.02.002
- James M., Avdeev M., Barnes P. et al. // J. Solid State Chem. 2007. V. 180. № 8. P. 2233. https://doi.org/10.1002/chin.200835004
- Dudnikov V.A., Orlov Y.S., Kazak N.V. et al. // Ceram. Int. 2018. V. 44. № 9. P. 10299. https://doi.org/10.1016/j.ceramint.2018.03.037
- Vereshchagin S.N., Dudnikov V.A., Shishkina N.N. et al. // Thermochim. Acta. 2017. V. 655. P. 34. https://doi.org/10.1016/j.tca.2017.06.003
- Dudnikov V.A., Orlov Yu.S., Gavrilkin S.Yu. et al. // J. Phys. Chem. 2016. V. 120. P. 13443. https://doi.org/10.1021/acs.jpcc.6b04810
- Maklakova A.V., Baten’kova A.S., Vlasova M.A. et al. // Solid State Sci. 2020. V. 110. P. 106453. https://doi.org/10.1016/j.solidstatesciences.2020.106453
- Дудников В.А., Казак Н.В., Орлов Ю.С. и др. // ЖЭТФ. 2019. Т. 155. № 4. С. 737. https://doi.org/10.1134/S0044451019040175
- Istomin S.Y., Drozhzhin O.A., Svensson G. // Solid State Sci. 2004. V. 6. P. 539. https://doi.org/10.1016/j.solidstatesciences.2004.03.029.
- Petrov A.N., Cherepanov V.A., Kononchuk O.F. et al. // J. Solid State Chem. 1990. V. 87. № 1. P. 69. https://doi.org/10.1016/0022-4596(90)90066-7
- James M., Morales L., Wallwork K. et al. // Physica B. 2006. V. 385–386. P. 199. https://doi.org/10.1016/j.physb.2006.05.244
- Qiu L., Ichikawa T., Hirano A. et al. // Solid State Ionics. 2002. V. 158. № 1–2. P. 55. https://doi.org/10.1016/S0167-2738(02)00757-9
- Dyck C.R., Yu G., Krstic V.D. // Mater. Res. Soc. Symp. Proc. 2003. V. 801. P. 114. https://doi.org/10.1557/PROC-801-BB3.4
- Aksenova Т.V., Cherepanov V.A., Gavrilova L.Ya. et al. // Prog. Solid State Chem. 2007. V. 35. P. 175. https://doi.org/10.1016/j.progsolidstchem.2007.03.001
- Elkalashy Sh.I., Gilev A.R., Aksenova Т.V. et al. // Solid State Ionics. 2018. V. 31. P. 85. https://doi.org/10.1016/j.ssi.2017.12.028
- Xu Q., Huang D., Chen W. et al. // J. Alloys Compd. 2007. V. 429. № 1–2. P. 34. https://doi.org/10.1016/j.jallcom.2006.04.005
- Dasgupta N., Krishnamoorthy R., Thomas J.K. // Mater. Sci. Eng., B. 2002. V. 90. № 3. P. 278. https://doi.org/10.1016/S0921-5107(02)00058-2
- Lee K.T., Manthiram A. // Solid State Ionics. 2005. V. 176. № 17–18. P. 1521. https://doi.org/10.1016/j.ssi.2005.05.002
- Riza F., Ftikos Ch., Tietz F. et al. // J. Eur. Ceram. Soc. 2001. V. 21. № 10–11. P. 1769. https://doi.org/10.1016/S0955-2219(01)00112-1
- Elkalashy Sh.I., Aksenova Т.V., Urusova A.S. et al. // Solid State Ionics. 2016. V. 295. P. 96. https://doi.org/10.1016/j.ssi.2016.08.005
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Maklakova A.V., Vlasova M.A., Volkova N.E. et al. // J. Alloys Compd. 2021. V. 883. P. 160794. https://doi.org/10.1016/j.jallcom.2021.160794
- Khvostova L.V., Volkova N.E., Gavrilova L.Ya. et al. // Mater. Today Commun. 2021. V. 29. № 25. P. 102885. https://doi.org/10.1016/j.mtcomm.2021.102885
- Volkova N.E., Maklakova A.V., Gavrilova L.Ya et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 26. P. 3285. https://doi.org/10.1002/ejic.201700321
- Aksenova Т.V., Mysik D.K., Cherepanov V.A. // Catalysts. 2022. V. 12. P. 1344. https://doi.org/10.3390/catal12111344
- Tsipis E.V., Naumovich E.N., Patrakeev M.V. et al. // J. Solid State Electrochem. 2021. V. 25. P. 2777. https://doi.org/10.1007/s10008-021-05023-8
- Cherepanov V.A., Barkhatova L.Yu., Petrov A.N. // J. Phys. Chem. Solids. 1994. V. 55. № 3. P. 229. https://doi.org/10.1016/0022-3697(94)90137-6
- Huheey J.I. Inorganic Chemistry. N.Y.: Harper & Row, 1983.
- Aksenova Т.V., Gavrilova L.Ya., Cherepanov V.A. // J. Solid State Chem. 2008. V. 10. P. 1480. https://doi.org/10.1016/j.jssc.2008.03.010
- Grenier J.C., Fournes L., Pouchard M. et al. // Mater. Res. Bull. 1986. V. 21. № 4. P. 441. https://doi.org/10.1016/0025-5408(86)90009-7
- Takeda T., Watanabe H. // J. Phys. Soc. Jpn. 1972. V. 33. № 4. P. 973. https://doi.org/10.1143/JPSJ.33.973
Қосымша файлдар
