Heat capacity and thermodynamic functions of lutetium titanate Lu2Ti2O7
- Autores: Gagarin P.G.1, Guskov A.V.1, Guskov V.N.1, Khoroshilov A.V.1, Gavrichev K.S.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 99, Nº 4 (2025)
- Páginas: 537-548
- Seção: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- ##submission.dateSubmitted##: 14.06.2025
- ##submission.dateAccepted##: 14.06.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://vestnikugrasu.org/0044-4537/article/view/684370
- DOI: https://doi.org/10.31857/S0044453725040023
- EDN: https://elibrary.ru/FOMGYH
- ID: 684370
Citar
Resumo
The heat capacity of lutetium titanate was measured in the temperature range 2–1869 K and the smoothed temperature dependences of heat capacity entropy enthalpy changes and reduced Gibbs energy were calculated. The presence of a gentle anomaly in the heat capacity of Lu2Ti2O7 in the low temperature range was confirmed and its parameters were determined. Based on the calculated values of Gibbs energy thermodynamic stability in the studied temperature range was estimated.
Palavras-chave
Texto integral

Sobre autores
P. Gagarin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: gagarin@igic.ras.ru
Rússia, Leninsky prospect, 31, Moscow, 119991
A. Guskov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Leninsky prospect, 31, Moscow, 119991
V. Guskov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Leninsky prospect, 31, Moscow, 119991
A. Khoroshilov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Leninsky prospect, 31, Moscow, 119991
K. Gavrichev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Leninsky prospect, 31, Moscow, 119991
Bibliografia
- Knop O., Brisse F., Castelliz L. // Can. J. Chem. 1969. V. 47. P. 971. https://doi.org/10.1139/v69-155
- Subramanian M.A., Aravamudan G., Rao G.V.S. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Vassen R., Jarligo M.O., Steinke T., et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. doi: 10.1016/j.surfcoat.2010.08.151
- Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
- Steiner H.-J., Middleton P.H., Steele B.C.H. // J. Alloys Compd. 1993. V.190. P. 279. https://doi.org/10.1016/0925-8388(93)90412-G
- Bonville P., Petit S., Mirebeau I., et al. // J. Phys.: Cond. Matter. 2013. V. 25(27). P. 275601. doi: 10.1088/0953—8984/25/27/275601
- Kim H.G., Hwang D.W., Bae S.W., et al. // Catal. Lett. 2003. V. 91. P. 193. https://doi.org/10.1023/B: CATL.0000007154.30343.23
- Yadav P.K., Upadhyay Ch. // J. Supercond. Novel Magn. 2019. V. 32. P. 2267. https://doi.org/10.1007/s10948-018-4957-4
- Balachandran U., Eror N.G. // J. Mater. Res. 1989. V. 4(6). P. 1525. doi: 10.1557/JMR.1989.1525
- Johnson D.A., Westrum E.F., Jr. // Thermochim. Acta. 1994. V. 245. P. 173. https://doi.org/10.1016/0040-6031(94)85077-1
- Raju N.P., Dion M., Gingras M.J.P., et al. // Phys. Rev. B. 1999. V. 59(22). P. 14489. doi: https://doi.org/10.1103/PhysRevB.59.14489
- Ramirez A.P., Shastry B.S., Hayashi A., et al. // Phys. Rev. Lett. 2002. V. 89(6). P. 067202—1. doi: 10.1103/PhysRevLett.89.067202
- Saha S., Singh S., Dkhil B., et al. // Phys. Rev. B. 2008. V. 78. P. 214102. doi: 10.1103/PhysRevB.78.214102
- Bissengalieva M.R., Knyazev A.V., Bespyatov M.A., et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.106646
- Dasgupta P., Jana Y.M., Nag Chattopadhyay A., et al. // J. Phys. Chem. Solids. 2007. V. 68. P. 347. https://doi.org/10.1016/j.jpcs.2006.11.022
- Gagarin P.G., Guskov A.V., Khoroshilov A.V., et al. // Russ. J. Phys. Chem. A. 2024. V. 98, No. 9. P. 1883. doi: 10.1134/S0036024424700973
- Denisova L.T., Chumilina L.G., Ryabov V.V., et al. // Inorg. Mater. 2019. V. 55. No. 5. P. 477. doi: 10.1134/S0020168519050029
- Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V. 177. P. 1858. doi: 10.1016/j.jssc.2004.01.009
- Reznitskii L.A. // Neorg. Mater. 1993. V. 29 (9). P. 1310.
- Gagarin, P. G., Guskov, A. V., Guskov, et al. // Russ. J. of Inorganic Chemistry. https://doi.org/10.1134/S0036023624602046
- Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn.2020. V. 141. P. 105974. doi: https://doi.org/10.1016/j.jct.2019.105974
- Bissengaliyeva M.R., Gogol D.B., Taymasova Sh.T., Bekturganov N.S. // J. Chem. Eng. Data. 2011. V. 56. P. 195—204. https://doi.org/10.1021/je100658y
- Prohaska T., Irrgeher J., Benefield J., et al. // Pure and Applied Chemistry. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029.
- Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. doi: 10.1016/j.tca.2009.08.002
- Smith S.J., Stevens R., Liu Sh., et al. // Am. Mineral. 2009. V. 94. P. 236. doi: 10.2138/am.2009.3050236
- Konings R.J.M., Beneš O., Kovács A., et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. doi: 10.1063/1.4825256
- Ryumin M.A., Tyurin A.V., Khoroshilov A.V., et al. // Russ. J. Inorg. Chem. 2024. doi: 10.1134/S0036023624601132.
- Westrum E.F. // J. Chem. Thermodynamics. 1983. V. 15. P. 305—325. https://doi.org/10.1016/0021-9614(83)90060-5
- Kitagawa K., Higashinaka R., Ishida K., et al. // Phys. Rev. B. 2008. V. 77. P. 214403. doi: 10.1103/PhysRevB.77.214403
- Gruber J., Chirico R.D., Westrum E.F., Jr. // J. Chem. Phys. 1982. V. 76(9). P. 4600—4605. https://doi.org/10.1063/1.443538
- Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Russ. J. Phys. Chem. A. 2022. V. 96(9). P. 1831. doi: 10.1134/S003602442209014X
- Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Dokl. Phys. Chem. 2021. V. 500. Part 2. P. 105—109. doi: 10.1134/S001250162110002X
Arquivos suplementares
