Синтез, микроструктура и свойства керамики NaNbO₃–LiNbO₃, допированной фторидом лития

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Методом твердофазного синтеза получены однофазные керамические образцы новых составов (1-x)NaNbO₃ – хLiNbO₃ (x = 0, 0.05, 0.10, 0.15), модифицированные добавкой фторида лития, и изучены их кристаллическая структура, микроструктура, диэлектрические и нелинейные оптические свойства. Выявлено уменьшение среднего размера кристаллитов (областей когерентного рассеяния) от 108.1 нм до 42.8 нм, рассчитанного с использованием взвешенной по объему функции распределения кристаллитов по размерам. Установлено повышение температуры фазового перехода и ослабление нелинейных оптических свойств по мере роста содержания катионов лития в образцах.

Texto integral

Acesso é fechado

Sobre autores

Г. Калева

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Autor responsável pela correspondência
Email: kaleva@nifhi.ru
Rússia, Москва, 119991

E. Политова

Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН

Email: kaleva@nifhi.ru
Rússia, Москва, 119991

С. Иванов

Московский государственный университет им. М. В. Ломоносова

Email: kaleva@nifhi.ru
Rússia, Москва, 119991

A. Мосунов

Московский государственный университет им. М. В. Ломоносова

Email: kaleva@nifhi.ru
Rússia, Москва, 119991

С. Стефанович

Московский государственный университет им. М. В. Ломоносова

Email: kaleva@nifhi.ru
Rússia, Москва, 119991

Н. Садовская

Федеральное государственное бюджетное учреждение “Национальный исследовательский центр “Курчатовский институт”

Email: kaleva@nifhi.ru
Rússia, Москва, 119333

Bibliografia

  1. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Official Journal of the European Union L 37. 2003. V. 46. P. 19. http://data.europa.eu/eli/dir/2002/95/oj
  2. Zheng T., Wu J., Xiao D., Zhu J. // Prog. Mat. Sci. 2018. V. 98. P. 552. https://doi.org/10.1016/j.pmatsci.2018.06.002
  3. Wang G., Lu Z., Li Y.et al. // Chem. Rev. 2021. V. 121. P. 6124. https://doi.org/10.1021/acs.chemrev.0c01264
  4. Li D., Zeng X., Li Z. et al. // J. Adv. Ceram. 2021. V. 10. № 4. P. 675. https://doi.org/10.1007/s40145-021-0500-3
  5. García J.E. // Materials. 2015. V. 8. P. 7821. https://doi.org/10.3390/ma8115426
  6. Yang Z., Du H., Jin L. and Poelman D. // J. Mater. Chem. A. 2021. V. 9. P. 18026. https://doi.org/10.1039/d1ta04504k
  7. Wu J. // J. Appl. Phys. 2020. V. 127 Art. № 190901. https://doi.org/10.1063/5.0006261
  8. Panda P., and B. Sahoo B. // Ferroelectrics. 2015. V. 474. P. 128. https://doi.org/10.1080/00150193.2015.997146.
  9. Panda P. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0.
  10. Ye J., Wang G., Zhou M.et al. // J. Mater. Chem. C. 2019. V. 12. Art. № 4. https://doi.org/10.1039/C9TC01414D.
  11. Koruza J., Tellier J., Malič B. et al. // J. Appl. Phys. 2010. V. 108. Art. № 113509. https://doi.org/10.1063/1.3512980
  12. Zhang M.-H., Zhao C., Fulanović L. et al. // Appl. Phys. Lett. 2021. V. 118. Art. № 132903. https://doi.org/10.1063/5.0043050
  13. Konieczny K., Czaja P. // Arch. Metall. Mater. 2017. V. 62. № 2. P. 539. https://doi.org/10.1515/amm-2017-0079
  14. Chaker C., Gharbi W.E., Abdelmoula N. et al. // J. Phys. and Chem. Solids. 2011. V. 72. P. 1140. https://doi.org/10.1016/j.jpcs.2011.07.002
  15. Aoyagi R., Iwata M. and Maeda M. // Key Eng. Mater. 2009. V. 388. P. 233. https://doi.org/10.4028/www.scientific.net/KEM.388.233
  16. Smiga W., Garbarz-Glos B., Suchanicz J. et al. // Ferroelectrics. 2006. V. 345. P. 39. https://doi.org/10.1080/00150190601020925
  17. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielect. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042
  18. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984.
  19. Louër D., Weigel D., Louboutin R. // Acta Crystallogr. Sect. A. 1969. V. 25. P. 335. https://doi.org/10.1107/s0567739469000556
  20. Louboutin R., Louër D. // Ibid. 1972. V. 28. P. 396. https://doi.org/10.1107/S056773947200107X.
  21. Le Bail A., Louër D. // J. Appl. Crystallogr. 1978. V. 11. P. 50. https://doi.org/10.1107/S0021889878012662
  22. Zhurov V.V., Ivanov S.A. // Crystallogr. Rep. 1997. V. 42. P. 202.
  23. Maltoni P., Sarkar T., Varvaro G. et al. // J. Phys. D. Appl. Phys. 2021. V. 54. P. 124004.
  24. Maltoni P., Ivanov S.A., Barucca G. et al. // Sci. Rep. 2021. V. 11. P. 23307. https://doi.org/10.1038/s41598-021-02782-2
  25. Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1063/1.1656857.
  26. Stefanovich S. Yu. // Europ. Conf. on Lasers and Elecrto-Optics (CLEO-Europe’94). Amsterdam. 1994. Abstracts. P. 249.
  27. Jerphagnon J. // Phys. Rev. B. 1970. V. B2. № 4. P. 1091. https://doi.org/10.1103/PhysRevB.2.1091
  28. Lee H.J, Zhang S.H. Lead-Free Piezoelectrics. N.Y.: Springer, 2012.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffraction patterns of NN-LN samples doped with LiF, with x = 0 (a), 0.05 (b).

Baixar (79KB)
3. Fig. 2. Distribution curves of coherent scattering regions for NN-LN solid solutions doped with LiF, with x = 0 (a), 0.05 (b), 0.10 (c), 0.15 (d). The calculated average crystallite size varies from 1081 Å (a) to 693 Å (b), 625 Å (c) and 428 Å (d).

Baixar (159KB)
4. Fig. 3. Microstructure of NN-LN samples with x = 0 (a), 0.05 (b) and NN-LN samples doped with LiF with x = 0.05 (c), 0.15 (d). Scale bars – 1 μm (a–c) and 10 μm (d).

Baixar (346KB)
5. Fig. 4. Temperature dependences of the permittivity of NN-LN samples doped with LiF, with x = 0 (a), 0.05 (b), 0.10 (c), 0.15 (d), measured at frequencies of 1 (1), 10 (2), 100 (3), 300 kHz (4), 1 MHz (5)

Baixar (219KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024