Кавитационная активация окислительной деструкции цефтриаксона в водных растворах

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Впервые исследованы основные закономерности процессов деструкции цефалоспориновых антибиотиков (на примере цефтриаксона) персульфатом (ПС) при совместном воздействии низконапорной гидродинамической кавитации (ГК) и высокочастотного ультразвука мегагерцового диапазона (АК). Дана сравнительная оценка индивидуальных, комбинированных и гибридных окислительных систем. Эффективность деструкции цефтриаксона (ЦЕФ) возрастает в ряду: ГК < АК < АК+ГК (ГАК) < АК/ПС < ГК/ПС < ГАК/ПС < ГАК/ПС/Fe2+. Только в гибридной системе ГАК/ПС/Fe2+ достигается глубокое окисление ЦЕФ (93 %), при давлении на входе в кавитационное устройство 5 атм. Экспериментально, методом ингибирования радикальных реакций доказано, что в окислении цефтриаксона в гибридной системе ГАК/ПС/Fe2+ принимают участие как SO4•--, так и HO-радикалы. Рассмотрено влияние неорганических анионов (SO42-, Cl- и HCO3-) на процесс окислительной деструкции ЦЕФ. Степени мешающего влияния на скорость реакций окисления целевого соединения снижается в ряду: HCO3->>SO42->Cl-. Данное исследование демонстрирует большой потенциал гибридной системы ГАК/ПС/Fe2+ для эффективной деструкции биорезистентных органических загрязняющих веществ.

Texto integral

Acesso é fechado

Sobre autores

Д. Асеев

Байкальский институт природопользования CO РАН

Autor responsável pela correspondência
Email: aseev.denis.g@gmail.com
Rússia, Улан-Удэ

М. Сизых

Байкальский институт природопользования CO РАН

Email: aseev.denis.g@gmail.com
Rússia, Улан-Удэ

А. Батоева

Байкальский институт природопользования CO РАН

Email: aseev.denis.g@gmail.com
Rússia, Улан-Удэ

Bibliografia

  1. Гетьман М.А., Наркевич И.А. // Ремедиум. 2013. С. 50.
  2. Yu X., Tang X., Zuo J. et al. // Sci. Total Environ. 2016. V. 569–570. P. 23. DOI: https://doi.org/10.1016/ j.scitotenv.2016.06.113.
  3. Kumar M., Jaiswal S., Sodhi K.K. et al. // Environ. Int. 2019. V. 124. P. 448. DOI: https://doi.org/10.1016/ j.envint.2018.12.065.
  4. Dadgostar P. // Infect. Drug Resist. 2019. V. 12. P. 3903. DOI: /10.2147/IDR.S234610.
  5. Hofer U. // Nat. Rev. Microbiol. 2019. V. 17. P. 3. doi: 10.1038/s41579-018-0125-x.
  6. Захаренков И.А., Рачина С.А., Козлов Р.С. и др. // Клиническая микробиология и антимикробная химиотерапия. 2022. V. 24. P. 220. doi: 10.36488/cmac.2022.3.220-225.
  7. Ivetić T.B., Finčur N.L., Šojić Merkulov D.V. et al. // Catalysts. 2021. V. 11. doi: 10.3390/catal11091054.
  8. Qian Y., Liu X., Li K. et al. // Chem. Eng. J. 2020. V. 384. P. 123332. DOI: https://doi.org/10.1016/ j.cej.2019.123332.
  9. Zhao Y., Liang X., Wang Y. et al. // J. Colloid Interface Sci. 2018. V. 523. P. 7. DOI: https://doi.org/10.1016/ j.jcis.2018.03.078.
  10. Dewil R., Mantzavinos D., Poulios I. et al. // J. Environ. Manage. 2017. V. 195. P. 93. DOI: 10.1016/ j.jenvman.2017.04.010.
  11. Wang B., Wang Y. // Sci. Total Environ. 2022. V. 831. P. 154906. DOI: https://doi.org/10.1016/ j.scitotenv.2022.154906.
  12. Lin W., Liu X., Ding A. et al. // J. Water Process Eng. 2022. V. 45. P. 102468. DOI: https://doi.org/10.1016/ j.jwpe.2021.102468.
  13. Li S., Wu Y., Zheng H. et al. // Chemosphere. 2023. V. 311. P. 136977. DOI: https://doi.org/10.1016/ j.chemosphere.2022.136977.
  14. Kulišťáková A. // J. Water Process Eng. 2023. V. 53. P. 103727. DOI: https://doi.org/10.1016/ j.jwpe.2023.103727.
  15. Tanveer R., Yasar A., Nizami A.-S. et al. // J. Clean. Prod. 2023. V. 383. P. 135366. DOI: https://doi.org/10.1016/j.jclepro.2022.135366.
  16. Mohod A.V, Teixeira A.C.S.C., Bagal M.V. et al. // J. Environ. Chem. Eng. 2023. V. 11. P. 109773. DOI: https://doi.org/10.1016/j.jece.2023.109773.
  17. Raut-Jadhav S., Badve M.P., Pinjari D.V. et al. // Chem. Eng. J. 2016. V. 295. P. 326. DOI: https://doi.org/10.1016/j.cej.2016.03.019.
  18. Wang L., Luo D., Hamdaoui O. et al. // Sci. Total Environ. 2023. V. 876. P. 162551. DOI: https://doi.org/10.1016/j.scitotenv.2023.162551.
  19. Aseev D.G., Batoeva A.A. // Russ. J. Phys. Chem. A. 2015. V. 89. P. 1585. doi: 10.1134/S0036024415090046.
  20. Garkusheva N., Tsenter I., Kobunova E. et al. // Water. 2022. V. 14. doi: 10.3390/w14172604.
  21. Sampath Kumar K., Moholkar V.S. // Chem. Eng. Sci. 2007. V. 62. P. 2698. DOI: https://doi.org/10.1016/ j.ces.2007.02.010.
  22. Suslick K.S., McNamara W.B., Didenko Y. Hot Spot Conditions during Multi-Bubble Cavitation BT in Sonochemistry and Sonoluminescence / Eds: L.A. Crum, T.J. Mason, J.L. Reisse, K.S. Suslick. Netherlands, Dordrecht: Springer, 1999.
  23. Šarc A., Stepišnik-Perdih T., Petkovšek M. et al. // Ultrason. Sonochem. 2017. V. 34. P. 51. DOI: https://doi.org/10.1016/j.ultsonch.2016.05.020.
  24. Choi J., Cui M., Lee Y. et al. // Chem. Eng. J. 2018. V. 338. P. 323. DOI: https://doi.org/10.1016/ j.cej.2018.01.018.
  25. Gujar S.K., Gogate P.R., Kanthale P. et al. // Sep. Purif. Technol. 2021. V. 257. P. 117888. DOI: https://doi.org/10.1016/j.seppur.2020.117888.
  26. Thanekar P., Gogate P.R. // Sep. Purif. Technol. 2020. V. 239. P. 116563. DOI: https://doi.org/10.1016/ j.seppur.2020.116563.
  27. Ghanbari F., Moradi M. // Chem. Eng. J. 2017. V. 310. P. 41. doi: 10.1016/j.cej.2016.10.064.
  28. Zhou Y., Gao Y., Pang S.-Y. et al. // Water Res. 2018. V. 145. P. 210. DOI: https://doi.org/10.1016/ j.watres.2018.08.026.
  29. N.J. L., Gogate P.R., Pandit A.B. // Process Saf. Environ. Prot. 2021. V. 153. P. 178. DOI: https://doi.org/10.1016/j.psep.2021.07.023.
  30. Calcio Gaudino E., Canova E., Liu P. et al. // Molecules. 2021. V. 26. doi: 10.3390/molecules26030617.
  31. Liu P., Wu Z., Abramova A.V. et al. // Ultrason. Sonochem. 2021. V. 74. P. 105566. DOI: https://doi.org/10.1016/j.ultsonch.2021.105566.
  32. Meng X., Chu Y.B. // Adv. Mater. Res. 2013. V. 763. P. 33. doi: 10.4028/ href='www.scientific.net/AMR' target='_blank'>www.scientific.net/AMR. 763.33.
  33. Wu Z., Yuste-Córdoba F.J., Cintas P. et al. // Ultrason. Sonochem. 2018. V. 40. P. 3. DOI: https://doi.org/10.1016/j.ultsonch.2017.04.016.
  34. Braeutigam P. Degradation of Organic Micropollutants by Hydrodynamic and/or Acoustic Cavitation BT. Handbook of Ultrasonics and Sonochemistry / Еd. Ashokkumar M. Springer Singapore, Singapore. 2015.
  35. Braeutigam P., Franke M., Schneider R.J. et al. // Water Res. 2012. V. 46. P. 2469. DOI: https://doi.org/10.1016/j.watres.2012.02.013.
  36. Wojnárovits L., Tóth T., Takács E. // Crit. Rev. Environ. Sci. Technol. 2018. V. 48. P. 575. doi: 10.1080/10643389.2018.1463066.
  37. Wojnárovits L., Takács E. // Chemosphere. 2019. doi: 10.1016/j.chemosphere.2018.12.156.
  38. Kusic H., Peternel I., Ukic S. et al. // Chem. Eng. J. 2011. V. 172. P. 109. doi: 10.1016/j.cej.2011.05.076.
  39. Wang J., Wang S. // Chem. Eng. J. 2018. V. 334. P. 1502. doi: 10.1016/j.cej.2017.11.059.
  40. Özdemir C., Öden M.K., Şahinkaya S. et al. // Color. Technol. 2011. V. 127. P. 268. DOI: https://doi.org/10.1111/j.1478-4408.2011.00310.x.
  41. Serna-Galvis E.A., Silva-Agredo J., Giraldo-Aguirre A.L. et al. // Sci. Total Environ. 2015. V. 524–525. P. 354. DOI: https://doi.org/10.1016/ j.scitotenv.2015.04.053.
  42. Yi C., Lu Q., Wang Y. et al. // Ultrason. Sonochem. 2018. V. 43. P. 156. DOI: https://doi.org/10.1016/ j.ultsonch.2018.01.013.
  43. Gogate P.R., Pandit A.B. // Adv. Environ. Res. 2004. V. 8. P. 501. DOI: https://doi.org/10.1016/S1093-0191(03)00032-7.
  44. Wang X., Zhang Y. // J. Hazard. Mater. 2009. V. 161. P. 202. DOI: https://doi.org/10.1016/j.jhazmat.2008.03.073.
  45. Joshi R.K., Gogate P.R. // Ultrason. Sonochem. 2012. V. 19. P. 532. DOI: https://doi.org/10.1016/j.ultsonch.2011.11.005.
  46. Saharan V.K., Badve M.P., Pandit A.B. // Chem. Eng. J. 2011. V. 178. P. 100. DOI: https://doi.org/10.1016/j.cej.2011.10.018.
  47. Bu L., Shi Z., Zhou S. // Sep. Purif. Technol. 2016. V. 169. P. 59. DOI: https://doi.org/10.1016/j.seppur.2016.05.037.
  48. Ismail L., Ferronato C., Fine L. et al. // Environ. Sci. Pollut. Res. 2018. V. 25. P. 2651. doi: 10.1007/s11356-017-0629-3.
  49. Wang J., Wang S. // Chem. Eng. J. 2021. V. 411. P. 128392. doi: 10.1016/j.cej.2020.128392.
  50. Buxton G.V., Greenstock C.L., Helman W.P. et al. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513. doi: 10.1063/1.555805.
  51. Lee Y.-M., Lee G., Zoh K.-D. // J. Hazard. Mater. 2021. V. 403. P. 123591. DOI: https://doi.org/10.1016/j.jhazmat.2020.123591.
  52. Darsinou B., Frontistis Z., Antonopoulou M. et al. // Chem. Eng. J. 2015. V. 280. P. 623. doi: 10.1016/j.cej.2015.06.061.
  53. Khandarkhaeva M., Batoeva A., Sizykh M. et al. // J. Environ. Manage. 2019. V. 249. P. 109348. doi: 10.1016/j.jenvman.2019.109348.
  54. Machulek A., Ermírio F., Moraes J., Okano L. et al. // Photochem. Photobiol. Sci. 2009. V. 8. P. 985. doi: 10.1039/b900553f.
  55. Benkelberg H.-J., Warneck P. // J. Phys. Chem. 1995. V. 99. P. 5214. doi: 10.1021/j100014a049.
  56. Guerra-Rodríguez S., Rodríguez E., Singh D.N. et al. // Water. 2018. V. 10. doi: 10.3390/w10121828.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of laboratory installation (a) and cavitation chamber (b): 1 - pump, 2 - cavitation chamber, 2.1 - nozzle, 2.2 - piezoelements, 2.3 - cavitation cloud, 3 - high frequency generators 1.7 MHz, 4 - thermostat.

Baixar (176KB)
3. Fig. 2. Destruction of CEF in different oxidative systems: [CEF] = 36 μM, [PS] = 2 mM, Rvx=5.0 atm.

Baixar (181KB)
4. Fig. 3. Effect of Fe2+ concentration on the degradation of CEF in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [PS] = 360 μM, Pvh = 5 atm.

Baixar (90KB)
5. Fig. 4. Effect of persulfate concentration on the degradation of CEF in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [Fe2+] = 100 μM, Pvh = 5 atm.

Baixar (113KB)
6. Fig. 5. Effect of initial concentration of ceftriaxone on its degradation in the hybrid GAC/PS/Fe2+ system: [PS]=360 μM, [Fe2+]=100 μM, Pvx = 5 atm.

Baixar (118KB)
7. Fig. 6. Effect of inlet pressure on ceftriaxone degradation in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [PS] = 360 μM, [Fe2+] = 100 μM.

Baixar (97KB)
8. Fig. 7. Effect of inorganic anions on the degradation of CEF in the hybrid GAC/PS/Fe2+ system: [CEF] = 36 μM, [PS] = 360 μM, [Fe2+] = 100 μM, [Cl-] = 10 mM, [SO42-] = 10 mM, [HCO3-] = 10 mM, P = 5 atm.

Baixar (108KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024