Ways to modernize the setup for studying fluorescence and phosphorescence excitation spectra of polyaromatic hydrocarbon molecules cooled in an inert gas jet

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The experimental setup for obtaining fluorescence excitation spectra of molecules cooled in a supersonic inert gas jet is described. Fluorescence excitation spectra of substituted aldehyde molecules cooled in a supersonic jet are recorded using this setup. The spectra obtained using the setup is concluded to have a better signal-to-noise ratio as compared to the spectra known from publications. Further ways to modify the setup for registration of excitation spectra of sensibilized phosphorescence and phosphorescence of semivolatile molecules of polyaromatic hydrocarbons are considered.

Full Text

Restricted Access

About the authors

R. V. Terentyev

M. V. Lomonosov Moscow State University

Author for correspondence.
Email: terentyev_ruslan@mail.ru

Department of Chemistry

Russian Federation, Moscow

D. V. Maslov

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Russian Federation, Moscow

N. N. Yakovlev

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Russian Federation, Moscow

A. V. Stolyarov

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Russian Federation, Moscow

I. A. Godunov

M. V. Lomonosov Moscow State University

Email: terentyev_ruslan@mail.ru

Department of Chemistry

Russian Federation, Moscow

References

  1. Smalley R.E., Wharton L., Levy D.H. // Acc. Chem. Res. 1977. V. 10. № 4. P. 139.
  2. Мурга М.С., Вибе Д.З., Васюнин А.И. и др. // Успехи химии. 2020. V. 89. № 4. С. 430.
  3. Петухов В.А., Саввина Л.П. // Приборы и техника эксперимента. 1984. № 4. С. 170.
  4. Godunov I.A., Yakovlev N.N., Terentiev R.V., et al.// Phys. Chem. Chem. Phys. 2016. V. 18. № 22. P. 15244.
  5. Godunov I.A., Yakovlev N.N., Terentiev R.V., et al. // J. Quant. Spectrosc. Radiat. Transf. 2016. V.184. P. 341.
  6. Godunov I.A., Terentiev R.V., Maslov D.V., et al. // Struct. Chem. 2019. V. 30. № 2. P. 529.
  7. Maslov D. V., Povedailo V.A., Yakovlev D.L., et al. // Ibid. 2013. V. 24. № 4. P. 1265.
  8. Numata Y., Watahiki M., Toriyama H., et al. // J. Photochem. Photobiol. A Chem. 1997. V. 106. № 1—3. P. 101.
  9. Abe H., Kamei S., Mikami N., Ito M. // Chem. Phys. Lett. 1984. V. 109. № 3. P. 217.
  10. Ohta N., Baba H. // Mol. Phys. 1986. V. 59. № 5. P. 921.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup for obtaining fluorescence excitation spectra of molecules cooled in a supersonic jet. Legend: SM — stepper motor, RP — rotary prism, F — filter, OV — optical fiber, D — diaphragm, L — lens, OO — optical window, OK — optical cuvette, VK — vacuum valve, PD — photodiode, PMT — photomultiplier tube.

Download (262KB)
3. Fig. 2. Fluorescence excitation spectra of the oxalyl chloride molecule cooled in a jet, obtained in [7] (a), and obtained on the setup described in this work (b).

Download (149KB)
4. Fig. 3. Schematic diagram of the experiment in fluorescence excitation spectroscopy and sensitized phosphorescence of molecules cooled in a supersonic jet.

Download (126KB)

Copyright (c) 2025 Russian Academy of Sciences