Quantum-chemical study of energies of maleimide and itaconimide isomeric derivatives
- Authors: Panov A.A.1
-
Affiliations:
- Gause Institute of New Antibiotics
- Issue: Vol 99, No 4 (2025)
- Pages: 605-610
- Section: СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ
- Submitted: 14.06.2025
- Accepted: 14.06.2025
- Published: 15.06.2025
- URL: https://vestnikugrasu.org/0044-4537/article/view/684399
- DOI: https://doi.org/10.31857/S0044453725040098
- EDN: https://elibrary.ru/FPBPJR
- ID: 684399
Cite item
Abstract
For 38 pairs of the isomeric derivatives of maleimide and itaconimide, the Gibbs free energies were calculated using the density functional theory (DFT) and domain-based local pair natural orbital (DLPNO) methods. The effects of the solvent and of substituents in positions 1, 3, and 4 of the maleimide ring on the energy difference of the isomers were studied. Depending on the substituents and conditions, the equilibrium can shift toward the maleimide or itaconimide form. Further migration of the double bond and cis-trans- isomerism were also considered wherever possible.
Keywords
Full Text

About the authors
A. A. Panov
Gause Institute of New Antibiotics
Author for correspondence.
Email: 7745243@mail.ru
Russian Federation, Moscow, 119021
References
- Ravasco J.M.J.M., Faustino H., Trindade A., Gois P.M.P. // Chem. Eur. J. 2019. V. 25. P. 43.
- Elschner T., Obst F., Heinze T. // Macromol. Biosci. 2018. V. 18. P. 1800258.
- Wei K., Wen G., Zhao Y. et al. // J. Mater. Chem. C. 2016. V. 41(4). P. 9804.
- Oz Y., Sanyal A. // Chem. Rec. 2018. V. 18. P. 570.
- Aqueveque P., Anke T., Sterner O. // Zeitschrift für Naturforschung C. 2002. V. 57(3—4). P. 257.
- Yuan C., Yang H., Gong Q., et al. // Adv. Synth. Catal. 2021. V. 363. P. 3336.
- Askri S., Edziri H., Hamouda M.B. et al. // J. Molec. Struc. 2022. V. 1250. P. 131688.
- Albakhit S.D.Y., Mutlaq D.Z., Al-Shawi A.A.A. // Chem. Africa. 2023. V. 6. P. 2933.
- Gherbovet O., Garcia Alvarez M.C., Bignon J., Roussi F. // J. Med. Chem. 2016. V. 59(23). P. 10774.
- Galanti M.C., Galanti A.V. // J. Org. Chem. 1982. V. 47(8). P. 1572.
- Paramonova P., Sharonova T., Kalinin S., et al. // Mendeleev Commun. 2022. V. 32(2). P. 176.
- Haval K.P., Argade N.P. // J. Org. Chem. 2008. V. 73. P. 6936.
- Inyutina A., Kantin G., Dar′in D., Krasavin M. // J. Org. Chem. 2021. V. 86. P. 13673.
- Laha D., Meher K.B., Bankar O.S., et al. // Asian J. Org. Chem. 2022. V. 11, e202200062.
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73.
- Weigend F., Ahlrichs, R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
- Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057.
- Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102(11). P. 1995.
- Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101.
- Huang X., Sha F. // J. Org. Chem. 2008. V. 73. P. 1173.
- Chupakhin E., Gecht M., Ivanov A. et al. // Synthesis. 2021. V. 53(07). P. 1292.
- Панов А.А. // Докл.РАН. Химия, науки о материалах. 2023. Т. 508(1). С. 111. [Panov A.A. // Doklady Phys. Chem. 2023. V. 508(2). P. 28.]
- Chupakhin E., Kantin G., Dar’in D., Krasavin M. // Mendeleev Commun. 2022. V. 32. P. 382.
- Inyutina A., Dar’in D., Kantina G., Krasavin M. // Org. Biomol. Chem. 2021. V. 19. P. 5068.
Supplementary files
