First-principles study of tritium behavior in molten FLiBe

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of tritium in molten FLiBe, including in the presence of He in it, is studied at operating temperatures of MSR. The presence of helium in the fluoride melt is found to insignificantly change the partial function of the tritium-fluorine radial distribution. In the molten salt, preferential binding of tritium to one and two fluorine ions is observed when the bond length between tritium and fluorine is limited by the radius of the first coordination sphere. Tritium is shown to bind more frequently to one fluorine ion at 1073 K, yet this advantage is not apparent in the presence of He, and the tritium coordination changes more frequently. Lower temperatures (T ≤ 973 K) contribute to binding of 3H to two fluorine ions, but the presence of He, which creates an effect of the increasing temperature, can break this trend. Tritium is concluded to very rarely form bonds simultaneously with three fluorine ions. The form of tritium binding by fluorine affects the kinetic characteristics of tritium in molten FLiBe.

Full Text

Restricted Access

About the authors

A. E. Galashev

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia, Boris Yeltsin

Author for correspondence.
Email: galashev@ihte.ru
Russian Federation, Ekaterinburg; Ekaterinburg

A. F. Anisimov

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: galashev@ihte.ru
Russian Federation, Ekaterinburg

References

  1. Lam S.T., Li Q.-J., Mailoa J. et al. // J. Mater. Chem. A. 2021. V. 9. № 3. P. 1784. https://doi.org/10.1039/d0ta10576g
  2. Galashev A.Y., Rakhmanova O.R., Abramova K.A. et al. // J. Phys. Chem. B2023. V. 127. № . 5. P. 1197 https://doi.org/10.1021/acs.jpcb.2c06915
  3. Forsberg C.W., Lam S., Carpenter D.M., et al. // Nucl. Technol. 2017. V. 197. № 2. P. 119. https://doi.org/10.13182/NT16-101
  4. Шишкова Т.А., Голубева А.В., Розенкевич М.Б.// Журн.физ.химии. 2023. Т. 97. № 10. С. 1371. https://doi.org/10.31857/S0044453723100205 [Shishkova T.A., Golubeva A.V., Rozenkevich M.B.// Rus. J. Phys. Chem. A Т. 97. № 10. P. 2079. https://doi.org/10.31857/S0044453723100205]
  5. Guo S., Zhang J., Wu W., Zhou W. // Prog. Mater. Sci. 2018. V. 97. P. 448. https://doi.org/10.1016/j.pmatsci.2018.05.003
  6. Kamei T. // Sustainability 2012. V. 4. № 10. P. 2399. https://doi.org/10.3390/su4102399
  7. Cantor S., Ward W.T., Moynihan C.T. // J. Chem. Phys. 1969. V. 50. № 7. P. 2874. https://doi.org/10.1063/1.1671478
  8. Soler J.M., Artacho E., Gale J.D., et al. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745.
  9. https://doi.org/10.1088/0953-8984/14/11/302
  10. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.78.1396
  11. Kurth S, Perdew J.P., Blaha P. // Int. J. Quantum Chem. 1999. V. 75. № 4—5. P. 889. http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889:: AID-QUA54>3.0.CO;2-8
  12. Staroverov V.N., Scuseria G.E., Tao J., Perdew J.P. // Phys. Rev. B2004. V. 69. P. 075102. https://doi.org/10.1103/PhysRevB.69.075102
  13. Nose S.J. // Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
  14. Тойкка А.М., Мисиков Г.Х., Тойкка М.А. // Журн.физ.химии. 2023. Т. 97. № 6. С. 773. https://doi.org/10.31857/S0044453723060262 [Toikkaa A.M., Misikova G. Kh., Toikkaa M.A. // Rus. J. Phys. Chem. A, 2023. V. 97. № 6. P. 1098. https://doi.org/ 10.1134/S0036024423060262].
  15. Галашев А.Е., Анисимов А.Ф., Воробьев А.С. // Там же. 2023. Т. 97. № 12. С. 1690. https://doi.org/10.31857/S0044453723120099 [Galashev A.Y., Anisimov A.F., Vorob’ev A.S. // Rus. J. Phys. Chem. A 2023. V. 97. № 12. P. 2656. https://doi.org/10.1134/S0036024423120099]
  16. Calderoni P., Sharpea P., Hara M., Oya Y. // Fusion Eng. Design 2008. V. 83. 1331—1334. https://doi.org/10.1016/j.fusengdes.2008.05.01

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Partial radial distribution functions g3H-F(r) calculated at temperatures of 873 (a) and 1073 K (b): solid line — FLiBe+3H+ system, dotted line — FLiBe+3H+ + He.

Download (76KB)
3. Fig. 2. Change in the average bond length established within the first coordination sphere over time at different temperatures between the tritium ion and F– ions in the absence (a) and presence (b) of helium in the FLiBe salt melt; thick horizontal lines show the areas in which bonds were established between the tritium ion and one and three fluorine ions; in the intervals between these lines, tritium is bound to two F– ions.

Download (213KB)
4. Fig. 3. Frequency of occurrence of bonds of the tritium ion with one, two and three fluorine ions in the first coordination sphere, determined in the systems: FLiBe+3H+ (a) and FLiBe+3H+ + He (b) at different temperatures.

Download (186KB)
5. Fig. 4. Examples of ions selected from the first coordination sphere that form (+/-) bonds in the absence and presence (indicated in the figure in brackets) of helium in the molten salt mixture FLiBe at different temperatures.

Download (46KB)
6. Fig. 5. The lifetime of different types of 3H+–iF– bonds (i = 1–3) within the first coordination sphere for the systems: FLiBe+3H+ (a) and FLiBe+3H+ + He (b), obtained in the course of first-principles MD simulation at T = 1073 K.

Download (143KB)
7. Fig. 6. Mean squares of the displacement of fluorine ions in the FLiBe+3H++He system at different temperatures; the inset shows similar curves for the tritium ion.

Download (88KB)

Copyright (c) 2025 Russian Academy of Sciences