Carbon nanomaterials. Electron paramagnetic resonance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electron paramagnetic resonance (EPR) is a widely used instrumental research method in chemistry, physics, biology, and materials science that can be successfully applied to characterize the electronic structure of carbon nanomaterials. This work presents a brief review of studies of various types of carbon nanostructures (CNS) by EPR, including measurement techniques, principles of spectral data processing and interpretation, and experimental results. The relationship between the properties of CNS and the nearest environment of paramagnetic centers, oxidation, and degradation of materials with time is analyzed.

Full Text

Restricted Access

About the authors

А. N. Ulyanov

M. V. Lomonosov Moscow State University

Email: savilov@mail.ru

Department of Chemistry

Russian Federation, Moscow, 119991

N. N. Kuznetsova

M. V. Lomonosov Moscow State University

Email: savilov@mail.ru

Department of Chemistry

Russian Federation, Moscow, 119991

S. V. Savilov

M. V. Lomonosov Moscow State University

Author for correspondence.
Email: savilov@mail.ru

Department of Chemistry

Russian Federation, Moscow, 119991

References

  1. B. Wang W., Likodimos V., Fielding A.J. et al. // Carbon N.Y. 2020. V. 160. P. 236.
  2. Kempiński M. // Mater. Lett. 2018. V. 230. P. 180.
  3. Sun Y., Wang X., Tang B. et al. // Mater. Lett. 2017. V. 189. P. 54.
  4. Fei Y., Fang S., Hu Y.H. // Chem. Eng. J. 2020. V. 397. P. 125408.
  5. Tiwari S., Purabgola A., Kandasubramanian B. // J. Alloys Compd. 2020. V. 825. P. 153954.
  6. Xia H., Wang Y., Lin J. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 33.
  7. Chen X., Wang L., Li W. et al. // Nano Res. 2013. V. 6. P. 619.
  8. Lebepe T.C., Parani S., Vuyelwa N. et al. // Mater. Lett. 2020. V. 279. P. 128470.
  9. Wang W., Yokoyama A., Liao S. et al. // Mater. Sci. Eng. C. 2008. V. 28. P. 1082.
  10. Vidhya M.S., Ravi G., Yuvakkumar R. et al. // Mater. Lett. 2020. V. 276. P. 128193.
  11. Wang C., Fu Q., Wen D. // Zeitschrift Fur Phys. Chemie. 2018. V. 232. P. 1647.
  12. Moreno-Castilla C., Maldonado-Hódar F.J. // Carbon N.Y. 2005. V. 43. P. 455.
  13. Lee K.S., Phiri I., Park C.W. et al. // Mater. Lett. 2020. V. 275. P. 128133.
  14. Kumar M., Chauhan H., Satpati B. et al. // Zeitschrift Fur Phys. Chemie. 2019. V. 233. P. 85.
  15. Gong Y., Ping Y., Li D. et al. // Appl. Surf. Sci. 2017. V. 397. P. 213.
  16. Yu Q., Dong T., Qiu R. et al. // Mater. Res. Bull. 2021. V. 138. P. 111211.
  17. Ershadi M., Javanbakht M., Mozaffari S.A. et al. // J. Alloys Compd. 2020. V. 818. P. 152912.
  18. Ampadu E.K., Kim J., Oh E. et al. // Mater. Lett. 2020. V. 277. P. 128323.
  19. Li J.L., Bai G.Z., Feng J.W. et al. // Carbon N.Y. 2005. V. 43. P. 2649.
  20. Soo L.T., Loh K.S., Mohamad A.B. et al. // J. Alloys Compd. 2016. V. 677. P. 112.
  21. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Appl. Surf. Sci. 2019. V. 488. P. 51.
  22. Kapteijn F., Moulijn J.A., Matzner S. et al. // Carbon N.Y. 1999. V. 37. P. 1143.
  23. Chernyak S.A., Ivanov A.S., Strokova N.E. et al. // J. Phys. Chem. C. 2016. V. 120. P. 17465.
  24. Sun M., Zhang G., Liu H. et al. // Sci. China Mater. 2015. V. 58. P. 683.
  25. Li Y., Ai C., Deng S. et al. // Mater. Res. Bull. 2021. V. 134. P. 111094.
  26. Duraisamy V., Krishnan R., Kumar S.M.S. // Mater. Res. Bull. 12022. V. 49. P. 111729.
  27. Diamantopoulou Α., Glenis S., Zolnierkiwicz G. et al. // J. Appl. Phys. 2017. V. 121. P. 043906.
  28. Augustyniak-Jabłokow M.A., Strzelczyk R., Fedaruk R. // Carbon N.Y. 2020. V. 168. P. 665.
  29. Tadyszak K., Chybczyńska K., Ławniczak P. et al. // J. Magn. Magn. Mater. 2019. V. 492. P. 165656.
  30. Ćirić L., Sienkiewicz A., Djokić D.M. et al. // Phys. Status Solidi Basic Res. 2010. V. 247. P. 2958.
  31. Cirić L., Sienkiewicz A., Gaál R. et al. // Phys. Rev. B. 2012. V. 86. P. 195138.
  32. Kempiński M., Los S., Florczak P. et al. // Appl. Phys. Lett. 2018. V. 113. P. 084102.
  33. Ulyanov A., Stolbov D., Savilov S. // Zeitschrift Für Phys. Chemie. 2022. V. 236. P. 79.
  34. Ulyanov A.N., Maslakov K.I., Savilov S.V. et al. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2023. V. 287. P. 116119.
  35. Savilov S.V., Ulyanov A.N., Desyatov A.V. et al. // Solid State Sci. 2022. V. 132. P. 106996.
  36. Savilov S., Suslova E., Epishev V. et al. // Nanomaterials. 2021. V. 11. P. 352.
  37. Cao M., Du C., Guo H. et al. // Compos. Part A Appl. Sci. Manuf. 2018. V. 115. P. 331.
  38. Ulyanov A.N., Suslova E.V., Savilov S.V. // Mendeleev Commun. 2023. V. 33. P. 127.
  39. Kempiński M., Śliwińska-Bartkowiak M., Kempiński W. // Rev. Adv. Mater. Sci. 2007. V. 14. P. 163.
  40. Szirmai P., Márkus B.G., Dóra B. et al. // Phys. Rev. B. 2017. V. 96. P. 075133.
  41. Joly V.L.J., Takahara K., Takai K. et al. // Ibid. B. 2010. V. 81. P. 115408.
  42. Ramakrishna Matte H.S.S., Subrahmanyam K.S., Rao C.N.R. // Phys. Chem. C. 2009. V. 113. P. 9982.
  43. Yazyev O.V., Helm L. // Phys. Rev. B. 2007. V. 75. P. 125408.
  44. Augustyniak-Jabłokow M.A., Tadyszak K., Maćkowiak M. et al. // Phys. Status Solidi — Rapid Res. Lett. 2011. V. 5. P. 271.
  45. Пул Ч., Техника ЭПР-спектроскопии. М. Мир, 1970. 549 с.
  46. Ulyanov A.N., Quang H.D., Pismenova N.E. et al. // Solid State Commun. 2012. V. 152. P. 1556.
  47. Ulyanov A.N., Suslova E.V., Maslakov K.I. et al. // Funct. Mater. Lett. 2022. V. 15. P. 2251040.
  48. Singh C., Nikhil S., Jana A. et al. // Chem. Commun. 2016. V. 52. P. 12661.
  49. Lin T.T., Lai W.H., Lü Q.F. et al. // Electrochim. Acta. 2015. V. 178. P. 517.
  50. Huang Y.H., Liao C.S., Wang Z.M. et al. // Phys. Rev. B. 2002. V. 65. P. 184423.
  51. Wang B., Fielding A.J., Dryfe R.A.W. et al. // J. Phys. Chem. C. 2019. V. 123. P. 22556.
  52. Ulyanov A.N., Yang D.S., Mazur A.S. et al. J. Appl. Phys. 2011. V. 109. P. 123928.
  53. Ghosh A., Pinto J.W.M., Frota H.O. // J. Magn. Reson. 2013. V. 227. P. 87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of graphene MGF before (a) and after (b, c) nitrogen doping; b — only graphite/quaternary N-radical, c — graphite/quaternary, pyrrole and pyridine types of nitrogen [21], d — fragment of CNT containing functional groups, including both edge and surface groups N, D, O and H [23].

Download (305KB)
3. Fig. 2. Initial experimental spectrum (derivative of the absorption line), ΔHpp and Δhpp are the width and intensity of the line from peak to peak (a); experimental spectrum of the absorption line, ΔH is the width of the line at half maximum (b).

Download (96KB)
4. Fig. 3. EPR spectra of oxidized carbon nanotubes: a — first derivative of the absorption spectrum (initial experimental spectrum); b — absorption spectrum obtained by integrating the initial spectrum; c — typical initial spectrum of non-oxidized CNT: no paramagnetic response.

Download (164KB)
5. Fig. 4. Covalently cross-linked CNT agglomerate synthesized using spark plasma sintering followed by treatment in nitric acid vapor (a); cylindrical oxidized CNTs (b).

Download (159KB)
6. Fig. 5. Temperature dependences of the intensity χ and line width (ΔH) (narrow – marked with index n and wide – b) of the K-CNT spectra (a); temperature dependences of the inverse intensity of the narrow 1/χn(T) and wide 1/χb(T) lines of the K-CNT (b). The inset shows the temperature dependence of the g-factor [35].

Download (192KB)
7. Fig. 6. EPR spectra of N-MHF obtained immediately after synthesis (a) and after 3.5 years of storage of samples (b).

Download (151KB)

Copyright (c) 2025 Russian Academy of Sciences