Hydrogen Evolution on Mechanically Synthesized Particles of Tungsten- and Iron-Based Carbides: WC, Fe3C, Fe3W3C, Fe6W6C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrocatalytic activity of a number of mechanically activated/mechanically alloyed carbide phases of iron and tungsten and Fe3W3C and Fe6W6C bimetallic carbides in the evolution of hydrogen has been studied. Electrocatalysts have been prepared by compacting carbide particles with polyaniline as a conducting polymer. The highest activity is exhibited by Fe3C and WC nanocrystalline particles. Metallic phases in the composition of the particles slow down the rate of hydrogen evolution. Subsequent annealing of these particles transforms metallic phases to bimetallic carbides and accelerates the hydrogen evolution. The activity of the phases of Fe3W3C and Fe6W6C bimetallic carbides in the hydrogen evolution is fairly high, but they are inferior to the Fe3C and WC nanocrystalline particles.

About the authors

N. V. Lyalina

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: nvlyalina@udman.ru
426067, Izhevsk, Russia

A. V. Syugaev

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: mrere@mail.ru
426067, Izhevsk, Russia

M. A. Eryomina

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: mrere@mail.ru
426067, Izhevsk, Russia

S. F. Lomayeva

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: mrere@mail.ru
426067, Izhevsk, Russia

References

  1. Safizadeh F., Ghali E., Houlach G. // Int. J. Hydrogen Energy. 2015. V. 40. P. 256 https://doi.org/10.1016/j.ijhydene.2014.10.109
  2. Du Y., Zang M., Wang Z. et al. // J. Mater. Chem. A. 2019. V. 7. P. 8602. https://doi.org/10.1039/C9TA00557A
  3. Zhou M., Sun Q., Shen Y. et al. // Electochimica Acta. 2019. V. 306. P. 651. https://doi.org/10.1016/j.electacta.2019.03.160
  4. Bentley C.L., Andronescu C., Smialkowski M. et al. // Angewandte Chemie Int. Ed. 2018. V. 57. P. 4093. https://doi.org/10.1002/anie.201712679
  5. Seo B., Jung G.Y., Kim J.H. et al. // Nanoscale. 2018. V. 10. P. 3839. https://doi.org/10.1039/C7NR08161H
  6. Nguyen Q.T., Nguyen P.D., Nguyen D.N. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 8659. https://doi.org/10.1021/acsami.7b18675
  7. De Silva U., Masud J., Zhang N. et al. // J. Mater. Chem. A. 2018. V. 6. P. 7608. https://doi.org/10.1039/C8TA01760C
  8. Tang S., Zhang Z., Xiang J. et al. // Front. Chem. 2022. V. 10. P. 1073175. https://doi.org/10.3389/fchem.2022.1073175
  9. Chen Y.-Y., Zhang Y., Jiang W.-J. et al. // ACS Nano. 2016. V. 10. P. 8851. https://doi.org/10.1021/acsnano.6b04725
  10. Yang C.C., Zai S.F., Zhou Y.T. et al. // Adv. Funct. Mater. 2019. V. 29. P. 1901949. https://doi.org/10.1002/adfm.201901949
  11. Tang Y., Lan K., Li F., Jiang P. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 9328. https://doi.org/10.1016/j.ijhydene.2019.02.115
  12. Liu Y.-R., Hu W.-H., Li X. et al. // Appl. Surf. Sci. 2016. V. 384. P. 51. https://doi.org/10.1016/j.apsusc.2016.05.007
  13. Dong T., Zhang X., Cao Y. et al. // Inorg. Chem. Front. 2019. V. 6. P. 1073. https://doi.org/10.1039/C8QI01335G
  14. Wang X.-L., Tang Y.-J., Huang W. et al. // ChemSusChem. 2017. V. 10. P. 2402. https://doi.org/10.1002/cssc.201700276
  15. Su J., Zhou J., Wang L. et al. // Sci. Bull. 2017. V. 62. P. 633. https://doi.org/10.1016/j.scib.2016.12.011
  16. Ma Y., Guan G., Hao X. et al. // Renew. Sust. Energ. Rev. 2017. V. 75. P. 1101. https://doi.org/10.1016/j.rser.2016.11.092
  17. Ko Y.-J., Cho J.-M., Kim I. et al. // Appl. Catal. B. Environmental. 2017. V. 203. P. 684. https://doi.org/10.1016/j.apcatb.2016.10.085
  18. Ma Y.-Y., Lang Z.-L., Yan L.-K. et al. // Energy Environ. Sci. 2018. V. 11. P. 2114. https://doi.org/10.1039/C8EE01129J
  19. Song C., Wu S., Shen X. et al. // J. Colloid Interf. Sci. 2018. V. 524. P. 93. https://doi.org/10.1016/j.jcis.2018.04.026
  20. Li S., Ren P., Yang C. et al. // Sci. Bull. 2018. V. 63. P. 1358. https://doi.org/10.1016/j.scib.2018.09.016
  21. Болдырев В.В. // Успехи химии. 2006. Т. 73. № 3. С. 203. (Boldyrev V.V. // Russian Chemical Reviews. 2006. V. 75. № 3. P. 177). https://doi.org/10.1070/rc2006v075n03abeh001205
  22. Syugaev A.V., Lyalina N.V., Lomayeva S.F. et al. // J. Solid State Electrochem. 2015. V. 19. P. 2933. https://doi.org/10.1007/s10008-015-2903-y
  23. Syugaev A.V., Lyalina N.V., Lomayeva S.F. et al. // J. Solid State Electrochem. 2016. V. 20. P. 775. https://doi.org/10.1007/s10008-015-3108-0
  24. Wu Z., Fang B., Bonakdarpoun A. et al. // Appl. Catal. B: Environ. 2012. V. 125. P. 59. https://doi.org/10.1016/j.apcatb.2012.05.013
  25. Ambrosi A., Chia X., Sofer Z. et al. // Electrochem. Commun. 2015. V. 54. P. 36. https://doi.org/10.1016/j.elecom.2015.02.017
  26. Сюгаев А.В., Лялина Н.В., Ломаева С.Ф. и др. // Физикохимия поверхности и защита материалов. 2012. Т. 48. С. 429 (Syuagev A.V., Lyalina N.V., Lomayeva S.F. et al. // Prot. Met. Phys. Chem. Surf. 2012. V. 48. P. 515). https://doi.org/10.1134/S2070205112050127
  27. Сюгаев А.В., Ломаева С.Ф., Решетников С.М. // Физикохимия поверхности и защита материалов. 2010. Т. 46. С. 74 (Syuagev A.V., Lomayeva S.F., Reshetnikov S.M. // Prot. Met. Phys. Chem. Surf. 2010. V. 46. P. 82). https://doi.org/10.1134/S2070205110010120
  28. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
  29. https://www.ill.eu/sites/fullprof/
  30. Ломаева С.Ф. // ФММ. 2007. Т. 104. С. 403 (Lomayeva S.F. // Phys. Met. Metallogr. 2007. V. 104. P. 388). https://doi.org/10.1134/S0031918X07100092

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (166KB)
3.

Download (358KB)
4.

Download (143KB)
5.

Download (133KB)
6.

Download (1MB)
7.

Download (321KB)
8.

Download (88KB)

Copyright (c) 2023 Н.В. Лялина, А.В. Сюгаев, М.А. Еремина, С.Ф. Ломаева