Физико-химические свойства растворов бис-(трифторметансульфонил)имида лития в сульфолане

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Изучены физико-химические свойства (электропроводность, вязкость и плотность в температурном диапазоне 30–50 °С), электрохимическая и термическая устойчивости растворов бис-(трифторметансульфонил)имида лития в сульфолане в диапазоне концентраций от 0.001 до 1.89 М. Показано, что растворы бис-(трифторметансульфонил)имида лития в сульфолане обладают высокой электрохимической устойчивостью (5.75 В отн. Li/Li+) и умеренной электропроводностью (2.75×10‒3 Ом‒1·см‒1 при 30 °С для 1 М раствора), соизмеримыми с сульфолановыми растворами гексафторфосфата лития.

Строение и транспортные свойства сульфолановых растворов бис-(трифторметансульфонил)имида лития определяются их концентрацией. В разбавленных растворах бис-(трифторметансульфонил)имид лития слабо ассоциирован. По мере увеличения концентрации степень электролитической диссоциации LiN(SO2CF3)2 первоначально уменьшается, а затем возрастает. Увеличение степени электролитической диссоциации бис-(трифторметансульфонил)имида лития с ростом концентрации объяснено образованием ионных тройников и более сложных ионных ассоциатов. С увеличением температуры константа ассоциации и предельная эквивалентная электропроводность LiN(SO2CF3)2 в сульфолане возрастают вследствие снижения степени самоассоциации и разрушения структуры растворителя.

Особенностью сульфолановых растворов бис-(трифторметансульфонил)имида лития является склонность к образованию устойчивых переохлажденных растворов.

Full Text

Restricted Access

About the authors

Л. В. Шеина

Уфимский федеральный исследовательский центр РАН

Author for correspondence.
Email: sheina.l.v@gmail.com

Уфимский Институт химии

Russian Federation, Уфа

E. B. Карасева

Уфимский федеральный исследовательский центр РАН

Email: sheina.l.v@gmail.com

Уфимский Институт химии

Russian Federation, Уфа

В. С. Колосницын

Уфимский федеральный исследовательский центр РАН

Email: sheina.l.v@gmail.com

Уфимский Институт химии

Russian Federation, Уфа

References

  1. Younesi R., Veith G.M., Johansson P. et al. // Energy Environ. Sci. 2015. V. 8. Р. 1905. https://doi.org/10.1039/C5EE01215E
  2. Бушкова О.В., Ярославцева Т.В., Добровольский Ю.А. // Электрохимия. 2017. Т. 53. № 7. C. 763. [Bushkova O.V., Yaroslavtseva T.V., Dobrovolsky Y.A. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 677. https://doi.org/10.7868/S0424857017070015]
  3. Flamme B., Garcia G.R., Weil M. et al. // Green Chem. 2017. V. 19. P. 1828. https://doi.org/10.1039/C7GC00252A
  4. Xu K. // Chemical Reviews. 2004. V. 104. № 10. P. 4303. https://doi.org/10.1021/cr030203g
  5. Zhang H., Han H., Cheng X. et al. // J. Power Sources. 2015. V. 296. P. 142. http://dx.doi.org/10.1016/j.jpowsour.2015.07.026
  6. Krause L.J., Lamanna W., Summerfield J. et al. // J. Power Sources. 1997. V. 68. P. 320. https://doi.org/10.1016/S0378-7753(97)02517-2
  7. Abouimrane A., Ding J., Davidson I.J. // J. Power Sources. 2009. V. 189. P. 693. http://doi: 10.1016/ j.jpowsour.2008.08.077
  8. Yoon S., Lee Y.-H., Shin K.-H., Cho S.B., Chung W.J. // Electrochim. Acta. 2014. V. 145. P. 170. http://dx.doi.org/10.1016/j.electacta.2014.09.007
  9. Shigenobu K., Sudoh T., Tabuchi M. et al. // J. Non-Cryst. Solids: X. 2021. V. 11–12. 100071. https://doi.org/10.1016/j.nocx.2021.100071
  10. Reddy V.P., Smart M.C., Chin K.B. et al. // Electrochem. Solid-State Lett. 2005. V. 8. № 6. A294. doi: 10.1149/1.1904466
  11. Han H.-B., Zhou S.-S., Zhang D.-J. et al. // J. Power Sources. 2011. V. 196. P. 3623. doi: 10.1016/j.jpowsour.2010.12.040
  12. Dahbi M., Ghamouss F., Tran-Van F. et al. // J. Power Sources. 2011. V. 196. P. 9743. DOI: 10.1016/ j.jpowsour.2011.07.071
  13. Seo D.M., Borodin O., Balogh D. et al. // J. Electrochem. Soc. 2013. V. 160. № 8. A1061. doi: 10.1149/2.018308jes
  14. Horwitz G., Rodriguez C., Factorovich M., Corti H.R. // J. Phys. Chem. C. 2019. V. 123. P. 12081. https://doi.org/10.1021/acs.jpcc.9b00864
  15. Shigenobu K., Dokko K., Watanabe M., Ueno K. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 15214. doi: 10.1039/d0cp02181d
  16. Maeyoshi Y., Ding D., Kubota M. et al. // ACS Appl. Mater. Interfaces. 2019. V. 1. № 29. P. 25833. https://doi.org/10.1021/acsami.9b05257
  17. Wu F., Zhou H., Bai Y. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 27. P. 15098. https://doi.org/10.1021/acsami.5b04477
  18. Flamme B., Światowska J., Haddad M. et al. // J. Electrochem. Soc. 2020. V. 167. 070508. DOI: 10.1149/ 1945-7111/ab63c3
  19. Wu W., Bai Y., Wang X., Wu C. // Chin. Chem. Lett. 2021. V. 32. P. 1309. https://doi.org/10.1016/ j.cclet.2020.10.009
  20. Su C.-C., He M., Amine R. et al. // Nano Energy. 2021. V. 83. 105843. https://doi.org/10.1016/ j.nanoen.2021.105843
  21. Xu K., Angell C.A. // J. Electrochem. Soc. 2002. V. 149. № 7. A920. doi: 10.1149/1.1483866
  22. Xu K., Angell C.A. // J. Electrochem. Soc. 1998. V. 145. № 4. L70. doi: 10.1149/1.1838419
  23. Abouimrane A., Belharouak I., Amine K. // Electrochem. Commun. 2009. V. 11. P. 1073. doi: 10.1016/j.elecom.2009.03.020
  24. Flamme B., Haddad M., Phansavath P. et al. // Chem. ElectroChem. 2018. V. 5. P. 2279. doi: 10.1002/celc.201701343
  25. Hofmann А., Kaufmann C., Müller M., Hanemann T. // Int. J. Mol. Sci. 2015. V. 16. P. 20258. doi: 10.3390/ijms160920258
  26. Ugata Y., Tatara R., Mandai T. et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 1851. https://dx.doi.org/10.1021/acsaem.0c02961
  27. Ugata Y., Shigenobu K., Tatara R. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 21419. https://doi.org/10.1039/D1CP02946K
  28. Zhang T., Porcher W., Paillard E. // J. Power Sources. 2018. V. 395. P. 212. https://doi.org/10.1016/j.jpowsour.2018.05.077
  29. Каюмов Р.Р., Шмыглева Л.В., Евщик Е.Ю. и др. // Электрохимия. 2021. T. 57. № 8. С. 507. doi: 10.31857/S0424857021060049 [Kayumov R.R., Shmygleva L.V., Evshchik E.Y. et al. // Russ. J. Electrochem. 2021. V. 57. № 8. P. 911. doi: 10.1134/S1023193521060045]
  30. Ock J.-Y., Fujishiro M., Ueno K. et al. // ACS Omega. 2021. V. 6. P. 16187. doi: 10.1021/acsomega.1c02161
  31. Hess S., Wohlfahrt-Mehrens M., Wachtler M. // J. Electrochem. Soc. 2015. V. 162. № 2. A3084. doi: 10.1149/2.0121502jes
  32. Ding M.S., Xu K., Jow T.R. // J. Therm. Anal. Calorim. 2000. V. 62. Р. 177. doi: 10.1023/A:1010175114578
  33. Rycerz L. // J. Therm. Anal. Calorim. 2013. V. 113. P. 231. doi: 10.1007/s10973-013-3097-0
  34. Резницких О.Г., Истомина А.С., Борисевич С.С. и др. // Журн. физ. химии. 2021. Т. 95. № 6. С. 867. [Reznitskikh O.G., Istomina A.S., Borisevich S.S. et al. // Rus. J. of Phys. Chem. A. 2021. V. 95. № 6. P. 1121. doi: 10.1134/S0036024421060224].
  35. Шеина Л.В., Иванов А.Л., Карасева Е.В., Колосницын В.С. // Электрохимия. 2021. Т. 57. № 12. С. 743. [Sheina L.V., Ivanov A.L., Karaseva E.V., Kolosnitsyn V.S. // Russ. J. Electrochem. 2021. V. 57. № 12. Р. 1138. doi: 10.1134/S1023193521120065].
  36. Фиалков Ю.Я., Житомирский А.Н., Тарасенко Ю.А. Физическая химия неводных растворов. Л.: Химия, 1973. 376 с.
  37. Monica M.D., Jannelli L., Lamanna U. // J. Phys. Chem. 1968. V. 72. № 3. Р. 1068. DOI: org/10.1021/j100849a050.
  38. Jannelli L., Lopez A., Jalenti R., Silvestri L. // J. Chem. Eng. Data. 1982. V. 27. Р. 28. doi: 10.1021/je00027a008.
  39. Doman´ska U., Moollan W.C. // J. Chem. Eng. Data. 1996. V. 41. P. 261. doi: 10.1021/je950236w.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional material to the article
Download (83KB)
3. Fig. 1. Isotherms of specific electrical conductivity (a), dynamic viscosity (b) and corrected electrical conductivity (c) of LiN(SO2CF3)2 solutions in sulfolane. The temperature is indicated in the legends.

Download (244KB)
4. Fig. 2. Concentration dependences of activation energies of electrical conductivity, viscous flow and transmission coefficients of LiN(SO2CF3)2 solutions in sulfolane.

Download (78KB)
5. Fig. 3. Concentration dependences of the degree of electrolytic dissociation of (α) LiN(SO2CF3)2 in sulfolane at different temperatures.The temperature is indicated in the legend.

Download (75KB)
6. Fig. 4. Cyclic voltammogram of 1 M LiN(SO2CF3)2 solution in sulfolane (30 °C) on a Pt electrode relative to Li/Li+. The potential sweep rate is 2 mV/s.

Download (55KB)
7. Fig. 5. Curves of mass loss (a) and thermal effects (DTA) (b) of LiTFSI (TV.), sulfolane and 1 M of LiTFSI solution in sulfolane (SL). The heating rate is 5 °C/min.

Download (166KB)
8. Fig. 6. Thermograms of DSC sulfolane and LiN(SO2CF3)2 solutions in sulfolane.

Download (162KB)

Copyright (c) 2024 Russian Academy of Sciences