Thermochemical Analysis of the Interaction between Pyridoxine and L-Carnosine, L-Histidine, and L-Asparagine in Aqueous Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Calorimetry is used to study the interaction between dipeptide L-carnosine (Car) and amino acids L-histidine (His) and L-asparagine (Asn) with pyridoxine (PN) in an aqueous solution. Experimental values of the enthalpy of dissolution of amino acids and peptide in an aqueous PN solution at T = 298.15 K are obtained for the first time. The thermodynamic characteristics and stoichiometry of the formation of molecular complexes between the reactants are determined. It is found that the stability of the resulting complexes depends on the structure of the reactants and falls in the order Car > Asn > His. It is shown that the main contribution to the stabilization of the resulting complexes comes from the entropy component of the Gibbs energy of complexation.

Sobre autores

E. Tyunina

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: tey@isc-ras.ru
153045, Ivanovo, Russia

O. Krutova

Ivanovo State University of Chemistry and Technology

Email: tey@isc-ras.ru
153000, Ivanovo, Russia

V. Barannikov

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: tey@isc-ras.ru
153045, Ivanovo, Russia

Bibliografia

  1. Kihal A., Rodriguez-Prado M., Godoy C. et al. // J. Dairy Sci. 2020. V. 103. P. 3125. https://doi.org/10.3168/jds.2019-17561
  2. Koczoń P., Piekut J., Borawska M. et al. // Spectrochim. Acta. Part A. 2005. V. 61. P. 1917. https://doi.org/10.1016/j.saa.2004.07.022
  3. Hellmann H., Mooney S. // Molecules. 2010. V. 15. P. 442. https://doi.org/10.3390/molecules15010442
  4. Li W., Yang X., Song Q. et al. // Bioorg. Chem. 2020. V. 97. P. 103707. https://doi.org/10.1016/j.bioorg.2020.103707
  5. Komasa A., Babijczuk K., Dega-Szafran Z. et al. // J. Mol. Struct. 2022. V. 1254. P. 131773. https://doi.org/10.1016/j.molstruc.2021.131773
  6. Ristilä M., Matxain J.M., Strid Ă. et al. // J. Phys. Chem. B. 2006. V. 110. P. 16774. https://doi.org/10.1021/jp062800n
  7. Гамов Г.А., Александрийский В.В., Шарнин В.А. // Журн. структур. химии. 2017. Т. 58. № 2. С. 293. https://doi.org/10.15372/JSC20170208
  8. Takács-Novák K., Tam K.Y. // J. Pharm. Biomed. Anal. 2000. V. 21. P. 1171.
  9. Noszál B. Acid-Base Properties of Pioligands in Piocoordination Chemistry. Ellis-Horwood, Chichester, UK, 1990.
  10. Tyunina E.Y., Badelin V.G., Mezhevoi I.N. et al. // J. Mol. Liq. 2015. V. 211. P. 494. https://doi.org/10.1016/j.molliq.2015.07.024
  11. Sharma M., Banipal T.S., Banipal P.K. // J. Chem. Eng. Data. 2018. V. 63. No. 5. P. 1325. https://doi.org/10.1021/acs.jced.7b00937
  12. Slifkin Von M.A. Charge Transfer Interaction in Biomolecules. London – New York: Acad. Press, 1971. https://doi.org/10.1002/ardp.19723050815
  13. Kimura T., Matubayasi N., Sato H. et al. // J. Phys. Chem. B. 2002. V. 106. P. 12336. https://doi.org/10.1021/jp021246o
  14. Krall A.S., Xu Sh., Geraeber Th.G. et al. // Nut. Commun. 2016. V. 7. P. 11457. https://doi.org/10.1038/ncomms11457
  15. Bretti C., Cigala R.M., Giuffrè O. et al. // Fluid Phase Equilibr. 2018. V. 459. P. 51. https://doi.org/10.1016/j.fluid.2017.11.030
  16. Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Liq. 2019. V. 278. P. 505. https://doi.org/10.1016/j.molliq.2019.01.092
  17. Cleland W.W. // Arch. Biochem. Biophys. 2000. V. 382. P. 1.
  18. Tyunina E.Yu., Mezhevoi I.N., Dunaeva V.V. // J. Chem. Thermodynamic. 2020. V. 150. P. 106206. https://doi.org/10.1016/j.jct.2020.106206
  19. Abdelkader H., Swinden J., Pierscionek B.K. et al. // J. Pharm. Biomed. Analysis. 2015. V. 114. P. 241. https://doi.org/10.1016/j.jpba.2015.05.025
  20. Guiotto A., Calderan A., Ruzza P. et al. // Curr. Med. Chem. 2005. V. 12. P. 2293. https://doi.org/10.2174/0929867054864796
  21. Bertinaria M., Rolando B., Giorgis M. et al. // J. Med. Chem. 2011. V. 54. P. 611. https://doi.org/10.1021/jm101394n
  22. Tyunina E.Yu., Krutova O.N., Lytkin A.I. // Thermochim. Acta. 2020. V. 690. P. 178704. https://doi.org/10.1016/j.tca.2020.178704
  23. Barannikov V.P., Badelin V.G., Venediktov E.A. et al. // Russ. J. Phys. Chem. A. 2011. V. 85. № 1. P. 16.https://doi.org/10.1134/S003602441101002X
  24. Krutova O.N., Usacheva T.R., Myshenkov M.S. et al. // J. Therm. Anal. Cal. 2021. No.7. https://doi.org/10.1007/s10973-021-10982-1
  25. Kochergina L.A., Grosheva S.G., Krutova O.N. // Russ. J. Inorg. Chem. 2011. V. 56. P. 1481. https://doi.org/10.1134/S0036023611090129
  26. Vasil'ev V.P., Kochergina L.A., Garavin V.Yu. // Russ. J. Gen. Chem. 1985. V. 55. P. 2780.
  27. Lytkin A.I., Barannikov V.P., Badelin V.G. et al. // J. Therm. Anal. Cal. 2020. V. 139. P. 3683. https://doi.org/10.1007/s10973-019-08604-y
  28. Lytkin A.I., Krutova O.N., Tyunina E.Yu. et al. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.] 2020. V. 63. № 6. P. 25. https://doi.org/10.6060/ivkkt.20206306.6183
  29. Badelin V.G., Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711. https://doi.org/10.1134/S1070427207050047
  30. Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41. https://doi.org/10.1016/j.tca.2015.03.007
  31. Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
  32. Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. https://doi.org/10.1063/1.556034
  33. Badelin V.G., Smirnov V.I., Mezhevoi I.N. // Russ. J. Phys. Chem. 2002. V. 76. P. 1168.
  34. Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. 2010. V. 84. P. 1163. https://doi.org/10.1134/S0036024410070150
  35. Palecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
  36. Piekarski H., Nowicka B. // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
  37. Palecz B., Piekarski H., Romanowski S. // J. Mol. Liq. 2000. V. 84. P. 279.
  38. Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219–226.
  39. Palecz B. // J. Am. Chem. Soc. 2005. V. 127. No. 50. P. 17768. https://doi.org/10.1021/ja054407l
  40. Refat M.S., Al-Azab F.M., Al-Maydama H.M.A. et al. // Spectrochim. Acta. Part A: Mol. Biomol. Spectroscopy. 2014. V. 127. P. 196. https://doi.org/10.1016/j.saa.2014.02.043
  41. Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. № 11. P. 3096. https://doi.org/10.1021/bi00514a017

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (10KB)
3.

Baixar (12KB)
4.

Baixar (10KB)
5.

Baixar (38KB)

Declaração de direitos autorais © Е.Ю. Тюнина, О.Н. Крутова, В.П. Баранников, 2023