Effect of Chitosan on the Electronic State and Distribution of Rhodium on the Zeolite Catalyst Surface According to Data on IR Spectroscopy of Adsorbed Carbon Monoxide
- Authors: Shilina M.I.1, Obukhova T.K.2, Batova T.I.2, Kolesnichenko N.V.2
-
Affiliations:
- Faculty of Chemistry, Moscow State University
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Issue: Vol 97, No 7 (2023)
- Pages: 944-951
- Section: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Submitted: 27.02.2025
- Published: 01.07.2023
- URL: https://vestnikugrasu.org/0044-4537/article/view/668695
- DOI: https://doi.org/10.31857/S0044453723070269
- EDN: https://elibrary.ru/SMGLNH
- ID: 668695
Cite item
Abstract
Zeolite catalysts for the conversion of dimethyl ether to light olefins with a monoatomic distribution of rhodium are studied via infrared spectroscopy of the diffuse reflection of adsorbed carbon monoxide and X-ray absorption spectroscopy. The zeolite is preliminarily treated with ultrasound to obtain a monatomic distribution of the active component on the support’s surface, and a polymer (chitosan hydrochloride) is used as the medium for dispersing rhodium at the stage of impregnation. A sample prepared via the traditional impregnation of zeolite with an aqueous solution of rhodium chloride is studied for purposes of comparison. It is shown that rhodium in the structure of zeolite treated with ultrasound is in the form of isolated metal centers whether it is deposited with or without a polymer. Synthesis with chitosan results in a more disperse distribution of rhodium on the outer surface of the zeolite and greater oxidizing ability of the catalyst.
About the authors
M. I. Shilina
Faculty of Chemistry, Moscow State University
Email: batova.ti@ips.ac.ru
119991, Moscow, Russia
T. K. Obukhova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: batova.ti@ips.ac.ru
119071, Moscow, Russia
T. I. Batova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: batova.ti@ips.ac.ru
119071, Moscow, Russia
N. V. Kolesnichenko
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: batova.ti@ips.ac.ru
119071, Moscow, Russia
References
- Naranov E.R., Dement’ev K.I., Gerzeliev I.M. et al. // Pet. Chem. 2019. V. 59. № 3. P. 247. https://doi.org/10.1134/S0965544119030101
- Kolesnichenko N.V., Ezhova N.N., Snatenkova Yu.M. // Russ. Chem. Rev. 2020. V. 89. № 2. P. 191. [Колесниченко Н.В., Ежова Н.Н., Снатенкова Ю.М. // Успехи химии. 2020. Т. 89. № 2. С. 191. https://doi.org/10.1070/RCR4900].10.1070/RCR4900
- Khadzhiev S.N., Ezhova N.N., Yashina O.V. // Pet. Chem. 2017. V. 57. № 7. P. 553. [Хаджиев С.Н., Ежова Н.Н., Яшина О.В. // Нефтехимия. 2017. Т. 2. № 1. С. 3. https://doi.org/10.1134/S241421581701004X]https://doi.org/10.1134/S0965544117070040
- Ezhova N.N., Kolesnichenko N.V., Batova T.I. // Pet. Chem. 2020. V. 60. № 4. P. 459. [Ежова Н.Н., Колесниченко Н.В., Батова Т.И. // Нефтехимия. 2020. Т. 2. № 1. С. 74. https://doi.org/10.53392/27130304_2020_2_1_74]https://doi.org/10.1134/S0965544120040064
- Samantaray M.K., D’Elia V., Pump E. et al. // Chem. Rev. 2020. V. 120. P. 734. https://doi.org/10.1021/acs.chemrev.9b00238
- Ding Sh., Hülsey M.J., Pérez-Ramírez J., Yan N. // Joule. 2019. V. 3. P. 2897. https://doi.org/10.1016/j.joule.2019.09.015
- Bai S., Liu F., Huang B. et al. // Nat. Commun. 2020. V. 11. P. 954. https://doi.org/10.1038/s41467-020-14742-x
- Zhang T., Chen Z., Walsh A.G. et al. // Adv. Mater. 2020. V. 32. № 44. P. 2002910. https://doi.org/10.1002/adma.202002910
- Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. № 21. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
- Budiman A.W., Nam J.S., Park J.H. et al. // Catal. Surv. Asia. 2016. V. 20. P. 173.https://doi.org/10.1007/s10563-016-9215-9
- Ren Z., Lyu Y., Song X. et al. // Adv. Mater. 2019. V. 31. P. 1904976. https://doi.org/10.1002/adma.201904976
- Ren Z., Lyu Y., Feng S. et al. // Mol. Catal. 2017. V. 442. P. 83. https://doi.org/10.1016/j.mcat.2017.09.007
- Park K., Lim S., Baik J.H. et al. // Catal. Sci. Technol. 2018. V. 8. P. 2894. https://doi.org/10.1039/C8CY00294K
- Saikia P.K., Sarmah P.P., Borah B.J. et al. // J. Mol. Catal. A: Chem. 2016. V. 412. P. 27. https://doi.org/10.1016/j.molcata.2015.11.015
- Qi J., Finzel J., Robatjazi H.et al. // J. Am. Chem. Soc. 2020. V. 142. № 33. P. 14178. https://doi.org/10.1021/jacs.0c05026
- Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
- Batova T.I., Obukhova T.K., Stashenko A.N. et al. // Pet. Chem. 2022. V. 62. P. 425. https://doi.org/10.1134/S0965544122020165
- Babucci M., Guntida A., Gates B.C. // Chem. Rev. 2020. V. 120. № 21. P. 11956. https://doi.org/10.1021/acs.chemrev.0c00864
- Ogino I., Gates B.C. // J. Phys. Chem. C. 2010. V. 114. № 18. P. 8405. https://doi.org/10.1021/jp100673y
- Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
- Asokan C., Thang H.V., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
- Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
- Hou Y., Ogasawara S., Fukuoka A., Kobayashi H. // Catal. Sci. Technol. 2017. V. 7. P. 6132. https://doi.org/10.1039/C7CY02183F
- Chernyshov A., Veligzhanin A., Zubavichus Y. // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- Trofimova N., Veligzhanin A., Murzin V. et al. // Ross. Nanotechnol. 2013. V. 8. P. 396. https://doi.org/10.1134/S1995078013030191
- Ravel B., Newville M. // J. Synchrotron. Rad. 2005. V. 12. P. 537 https://doi.org/10.1107/S0909049505012719
- Newille M. // J. Synchrotron. Rad. 2001. V. 8. 322. https://doi.org/10.1107/S0909049500016964
- Sun Q., Wang N., Zhang T. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 51. P. 18570. https://doi.org/10.1002/anie.201912367
- Liang A.J., Gates B.C. // J. Phys. Chem. C. 2008. V. 112. P. 18039. https://doi.org/10.1021/jp805917g
- Kolesnichenko N.V., Snatenkova Y.M., Batova T.I. et al. // Microporous Mesoporous Mater. 2022. V. 330. P. 111581. https://doi.org/10.1016/j.micromeso.2021.111581
- Bulanek R., Voleska I., Ivanova E. et al. // J. Phys. Chem. C. 2009. V. 113. № 25. P. 11066. https://doi.org/10.1021/jp901575p
- Voleská I., Nachtigall P., Ivanova E. et al. // Catal. Today. 2015. V. 243. P. 53. https://doi.org/10.1016/j.cattod.2014.07.029
- Arean C.O., Nachtigallova D., Nachtigall P. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. No. 12. P. 1421. https://doi.org/10.1039/b615535a
- Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. p.668.
- Shilina M.I., Udalova O.V., Nevskaya S.M. // Kinet. Catal. 2013. V. 54. P. 691. [Шилина М.И, Удалова О.В., Невская С.М. // Кинетика и катализ. 2013. Т. 54. № 6. С. 731. https://doi.org/10.7868/S0453881113060117]https://doi.org/10.1134/S0023158413060116
- Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // J. Catal. 2005. V. 236. P. 168–171. https://doi.org/10.1016/j.jcat.2005.09.017
- Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
Supplementary files
