Determining Characteristics of a Model of Molecular Sorption, Based on an Example of the Separation of Components of Extractional Phosphoric Acid via “Retardation” on Ionites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A dynamic model of the transfer and molecular sorption processes inside a sorption column is considered, based on the acid retardation of a gel anion exchanger. A three-layer model of a space filled with a solution is used to describe the process of keeping solution components inside nanosized pores in a multicomponent system. Allowance is made for the heterogeneity of the concentrations of molecules in the pores of the sorbent, caused by the forces acting on polar molecules from the sorption centers. The model allows calculation of changes in the concentrations of components over time inside the sorption column and, based on output concentration curves obtained experimentally, to determine characteristics of the process of holding molecules inside nanosized pores. Results from modeling are compared to experimental data on the purification of industrial extractive phosphoric acid.

About the authors

M. A. Kaznacheev

Moscow State University

Email: kaznacheev.michael@mail.ru
119991, Moscow, Russia

N. A. Tikhonov

Moscow State University

Email: kaznacheev.michael@mail.ru
119991, Moscow, Russia

R. Kh. Khamizov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: kaznacheev.michael@mail.ru
119334, Moscow, Russia

References

  1. Hatch M.J., Dillon J.A. // I&EC Process Design and Development. 1963. V. 2. № 4. P. 253. https://doi.org/10.1021/i260008a001
  2. Ферапонтов Н.Б., Горшков В.И., Тробов Х.Т., Парбузина Л.Р. и др. // Журн. физ. химии А. 1996. Т. 70. № 5. С. 904.
  3. Ferapontov N.B., Gorshkov V.I., Parbuzina L.R. et al. // React. Funct. Polym. 2006. V. 66. № 12. P. 1749. https://doi.org/10.1016/j.reactfunctpolym.2006.08.005
  4. Davankov V.A., Tsyurupa M.P., Alexienko N.N. // J. Chromatography A. 2005. V. 1100. № 1. P. 32. https://doi.org/10.1016/j.chroma.2005.09.007
  5. Davankov V., Tsyurupa M., Blinnikova Z., Pavlova L // J. Sep. Sci. 2009. V. 32. № 1. P. 64. https://doi.org/10.1002/jssc.200800449
  6. Крачак А.Н., Хамизов Р.Х., Познухова В.А. и др. // Сорб. хромат. процессы. 2011. Т. 11. № 1. С. 77.
  7. Khamizov R.Kh., Krachak A.N., Gruzdeva A.N. et al. // Geochem. Inter. 2016. V. 54. № 13. P.1221. https://doi.org/10.1134/S0016702916130085
  8. Хамизов Р.Х., Крачак А.Н., Подгорная Е.Б., Груздева А.Н. // Журн. аналит. химии. 2019. Т. 74. № 3. С. 186. https://doi.org/10.1134/S0044450219030071
  9. Sidelnikov G.B., Tikhonov N.A., Khamizov R.K., Krachak A.N. // Math. Models Comp. Simulations. 2013. V. 5. № 6. P. 501. https://doi.org/10.1134/S2070048213060112
  10. Глотова Е.А., Тихонов Н.А., Хамизов Р.Х., Крачак А.Н. // Вестн. Моск. универ. Серия 3: Физика. Астрономия. 2013. № 1. С. 64.
  11. Ferapontov N.B., Gorshkov V.I., Parbuzina L.R., Trobov H.T. et al. // React. Funct. Polym. 1999. V. 41. P. 213.
  12. Казначеев М.А., Тихонов Н.А., Хамизов Р.Х. // Сорбц. хромат. Процессы. 2021. Т. 21. № 4. С. 547. https://doi.org/10.17308/sorpchrom.2021.21/3639
  13. Brosheer J.C., Lenfesty E.A., Anderson J.F. // J. Am. Cem. Soc. 1954. V. 76. № 23. P. 5951. https://doi.org/10.1021/ja01652a016
  14. Galal-Gorchev H., Stumm W. // J. of Inorganic and Nuclear Chemistry. 1963. V. 25. Iss. 5. P. 567. https://doi.org/10.1016/0022-1902(63)80243-2
  15. Никольский Б.П., Григоров О.Н., Позин М.Е. и др. Справочник химика. Т. 3. Химическое равновесие и кинетика растворов, электродные процессы. Москва, Химия, 1965, 1008 с.
  16. Лурье Ю.Ю. Справочник по аналитической химии, издание четвертое. М.: Химия, 1971. 456 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (35KB)
3.

Download (62KB)

Copyright (c) 2023 М.А. Казначеев, Н.А. Тихонов, Р.Х. Хамизов