Synthesis of Graphdiynes, Morphological Study, and Comparative Analysis of the Hydrogen Adsorption Properties of Graphenes and Graphdiynes
- Authors: Soldatov A.P.1, Budnyak A.D.1, Kirichenko A.N.2, Ilolov A.M.1
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Private Institution of the State Atomic Energy Corporation Rosatom ITER Project Center
- Issue: Vol 97, No 10 (2023)
- Pages: 1457-1463
- Section: ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ, СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР И НАНОМАТЕРИАЛОВ
- Submitted: 26.02.2025
- Published: 01.10.2023
- URL: https://vestnikugrasu.org/0044-4537/article/view/668643
- DOI: https://doi.org/10.31857/S0044453723100229
- EDN: https://elibrary.ru/PNXVFH
- ID: 668643
Cite item
Abstract
Graphdiynes (GDYs) are two-dimensional carbon nanostructures containing sp- and sp2-hybridized carbon atoms that form conjugated bonds in the linear chains connecting six-membered carbon rings. The results of scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy showed that GDYs have a uniform surface and contain conjugated –С≡С–С≡С bonds. The hydrogen-adsorption capacity of GDYs was studied, and a comparative analysis of hydrogen adsorption in GDYs, graphenes, graphene nanotubes, and graphene structures formed on zeolites was performed. The substrate on which the carbon nanostructure is formed was shown to have a significant effect on the adsorption capacity of the latter. The possibility and prospects for the synthesis of graphenes on catalysts to increase their efficiency in hydrogenation processes are considered.
About the authors
A. P. Soldatov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: Soldatov@ips.ac.ru
119991, Moscow, Russia
A. D. Budnyak
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: Soldatov@ips.ac.ru
119991, Moscow, Russia
A. N. Kirichenko
Private Institution of the State Atomic Energy Corporation Rosatom ITER Project Center
Email: Soldatov@ips.ac.ru
119991, Moscow, Russia
A. M. Ilolov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: Soldatov@ips.ac.ru
119991, Moscow, Russia
References
- Balaban A.T., Rentia C.C., Ciupitu E. // Rev. Roum. Chim. 1968. V. 13. P. 231.
- Baughman R., Eckhardt H., Kertesz M. // J. Chem. Phys. 1987. V. 87. № 11. P. 6687.
- Ivanovskii A.L. // Prog. Solid State Chem. 2013. V. 41. № 1. P. 1.
- Wan W.B., Brand S.C., Pak J.J. et al. // Chem. A Eur. J. 2000. V. 6. № 11. P. 2044.
- Li G.X., Li Y.L., Liu H.B. et al. // Chem. Commun. 2010. V. 46. P. 3.
- Li G., Li Y., Qian X. et al. // J. Phys. Chem. C. 2011. V. 115. P. 2611.
- Zhou J., Gao X., Liu R. et al. // J. Am. Chem. Soc. 2015. V. 137. № 24. P. 7596.
- Yang N., Liu Y., Wen H. et al. // Nano. 2013. V. 7. № 2. P. 1504.
- Huang C., Zhang S., Liu H. et al. // Nano Energy. 2015. V. 11. P. 481.
- Kuang C., Tang G., Jiu T. et al. // Nano Lett. 2015. V. 15. № 4. P. 2756.
- Gao X., Zhou J., Du R. et al. // Adv. Mater. 2015. https://doi.org/10.1002/adma.201504407
- Li J., Xu J., Xie Z. et al. // Adv. Mater. 2018. V. 30. P. 1800548.
- Si H-Y., Mao C-J., Zhou J-Y. et al. // Carbon. 2018. V. 132. P. 598.
- Yao Y., Jin Z., Chen Y. et al. // Ibid. 2018. V. 129. P. 228.
- Shekar S.C., Swath R.S. // Ibid. 2018. V. 126. P. 489.
- Li C., Lu X., Han Y. et al. // Nano Research. 2018. V. 11. № 3. P. 1714.
- Pan Y., Wang Y., Wang L. et al. // Nanoscale. 2015. V. 7. P. 2116.
- Kan X., Ban Y., Wu C. et al. // ACS Appl. Mater. & Interfaces. 2018. V. 10. № 1. P. 53.
- Mortazavi B., Makaremi M., Shahrokhi M. et al. // Carbon. 2018. V. 137. P. 57.
- Dong Y., Zhao Y., Chen Y. et al. // J. of Materials Sci. 2018. V. 53. № 12. P. 8921.
- Huoliang Gu. et al. // J. Am. Chem. Soc. 2021. V. 143. № 23. P. 8679.
- Yuncheng Du. et al. // Acc. Chem. Res. 2020. V. 53. № 2. P. 459.
- Yang Z. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
- Zuo Z., Li Y. // Joule. 2019. V. 3. P. 899.
- Hui L., Xue Y., Yu H. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 10677.
- Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
- Yin C., Li J.Q., Li T.R. et al. // Adv. Funct. Mater. 2020. V. 30. https://doi.org/. 202001396.https://doi.org/10.1002/adfm
- Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
- Yan H., Yu P., Han G. et al. // Angew. Chem. Int. Ed. Engl. 2019. V. 58. P. 746.
- Zhou J.Y., Xie Z.Q., Liu R. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 2632.
- Lv J.X., Zhang Z.M. Wang J. et al. // WACS Appl. Mater. Interfaces. 2019. V. 32.
- Zuo Z., Shang H., Chen Y. et al. // Chem. Commun. (Camb.). 2017. V. 53. P. 8074.
- Li R., Sun H., Zhang Ch. et al. // Carbon. 2022. V. 188. P. 25.
- Gao J., Li J., Chen Y. et al. // Nano Energy. 2018. V. 43. P. 192.
- Yang Z., Zhang Y., Guo M. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
- Солдатов А.П., Бондаренко Г.Н., Сорокина Е.Ю. // Журн. физ. химии. 2015. Т. 89. № 2. С. 306. [Soldatov A.P., Bondarenko G.N., Sorokina E.Yu. // Russ. J. of Phys. Chem. A. 2015. V. 89. № 2. P. 282.]
- Tuinstra R., Koenig J.L. // J. Chem. Phys. 1970. V. 53. P. 1126.
- Estrade-Szwarckopf H. // Carbon. 2004. V. 42. P. 1713.
- Ferrari A.C., Meyer J.C., Scardaci V. et al. // Phys. Rev. Lett. 2006. V. 97. P. 187401.
- Солдатов А.П. // Журн. физ. химии. 2020. Т. 94. № 4. С. 483. [Soldatov A.P. // Russ. J. of Phys. Chem. A. 2020. V.94. № 4. P. 663.]
- Солдатов А.П., Кириченко А.Н., Татьянин Е.В. // Там же. 2016. Т. 90. № 7. С. 1038.
- Солдатов А.П. // Там же. 2019. Т. 93. № 3. С. 398. [Soldatov A.P. // Ibid. 2019. V. 93. №3. P. 494.]
- Солдатов А.П. // Там же. 2014. Т. 88. № 7–8. С. 1207. [Soldatov A.P. // Ibid. 2014. V. 88. № 8. P. 1388.]
- Солдатов А.П. // Журн. физ. химии. 2017. Т. 91. № 5. С. 897. [Soldatov A.P. // Ibid.2017. V. 91. № 5. P. 931.]
- Токабе И.К. Катализаторы каталитические процессы. М.: Наука, 1993.
Supplementary files
