Approximation of the results of gas chromatographic analysis of thermally unstable compounds using logistic regression
- Authors: Zenkevich I.G.1, Kornilova T.A.1
-
Affiliations:
- St. Petersburg University, Institute of Chemistry
- Issue: Vol 80, No 3 (2025)
- Pages: 307-322
- Section: ORIGINAL ARTICLES
- Submitted: 09.06.2025
- URL: https://vestnikugrasu.org/0044-4502/article/view/683423
- DOI: https://doi.org/10.31857/S0044450225030064
- EDN: https://elibrary.ru/aftdvs
- ID: 683423
Cite item
Abstract
Decomposition of thermally unstable analytes in the chromatograph injector is not uncommon in the practice of gas chromatographic analysis. However, as a rule, it cannot be detected by variations in the absolute areas of gas chromatographic peaks at different injector temperatures. This is hindered by the effects of area discrimination typical of sample dosing into capillary columns with flow division. The problem can be solved using relative peak areas calculated with respect to thermally stable compounds. Dependences of relative peak areas of unstable analytes on temperature (decreasing), as well as of their degradation products (increasing), are characterized by the presence of two limits. The low-temperature limits correspond to the real contents of unstable compounds or their degradation products in samples, and the high-temperature limits correspond to the composition of samples at hypothetically complete transformation of such analytes. Such dependences can be approximated by the logistic regression equation (otherwise – sigmoidal approximation or Boltzmann approximation). To test the applicability of logistic regression for processing the results of gas chromatographic analysis of thermally unstable compounds, the possibilities of approximating the temperature dependence of the peak areas of ethyldiazoacetate in various solvents were analyzed in the present work. The results confirm that gas chromatographic analysis of this ester and, apparently, of other diazocarbonyl compounds without their appreciable decomposition is possible at injector temperatures up to 200°C. The thermal destruction of ethyldiazoacetate in its solutions in aliphatic alcohols is accompanied by the formation of ethyl esters of alkoxyacetic acids – products of the introduction of intermediately formed ethoxycarbonylcarbene into the O–H bonds of alcohols. Such a characteristic of logistic regression as the value of the argument corresponding to the average value of the function indicates that the half-life temperatures of the initial analyte and “half-formation” of the products are the same, which makes it possible to correlate these processes with each other. A slight modification of the proposed method (addition of a point corresponding to the zero peak area at a hypothetical high injector temperature) makes it possible to extend it to characterize compounds with half-life temperatures higher than 300°C. Such a variant was used to test the thermal stability/instability of halogen derivatives of alkyl- and cycloalkylaromatic hydrocarbons under conditions of gas chromatographic analysis.
Full Text

About the authors
I. G. Zenkevich
St. Petersburg University, Institute of Chemistry
Author for correspondence.
Email: izenkevich@yandex.ru
Russian Federation, St. Petersburg
T. A. Kornilova
St. Petersburg University, Institute of Chemistry
Email: izenkevich@yandex.ru
Russian Federation, St. Petersburg
References
- Middleditch B.S. Analytical Artifacts: GC, MS, HPLC, TLC, and PC // J. Chromatogr. Library. 1989. V. 44. 1033 p.
- Barwick V.J. Sources of uncertainty in gas chromatography and high performance liquid chromatography. Review // J. Chromatogr. A. 1999. V. 849. P. 13.
- Zenkevich I.G. Features and new examples of gas chromatographic separation of thermally unstable analytes / Recent Advances in Gas Chromatography. London: IntechOpen Ltd. 2020. Ch. 3. P. 1.
- Зенкевич И.Г., Быстрова Г.И. Количественный анализ смесей, нестабильных в условиях хроматографического разделения. Определение примеси пропиленгликоля в пропиленкарбонате // Журн. аналит. химии. 1985. Т. 40. № 9. С. 1686. (Zenkevich I.G., Bystrova G.I. Quantitative analysis of mixtures unstable in the conditions of chromatographic separation. Determination of propylene glycol impurity in propylene carbonate // J. Anal. Chem. 1985. V. 40. № 9. P. 1686.).
- Reichardt P.B., Andersson B.J., Clausen J.P., Hoskins L.C. Thermal instability of germacrone: Implications for gas chromatographic analysis of thermally unstable analytes // Can. J. Chem. 1989. V. 69. P. 1174.
- Stashenko E.E., Jaramillo B.E., Martinez J.R. Comparicion de la composicion quimica y de la actividad antioxidante in vitro de los metabolitos secundarios volatiles de plantas de la familia verbenaceae // Rev. Acad. Colomb. Cienc. Exactas. Fis. Nat. 2003. V. 27. № 105. P. 579.
- Richelieu M., Houlberg U., Nielsen J.C. Detection of a-acetolactic acid and volatile compounds by headspace gas chromatography // J. Diary Sci. 1997. V. 80. № 9. P. 1918.
- Kozelj G., Prosen H. Thermal (in)stability of atropine and scopolamine in the GC-MS inlet // Toxics. 2021. V. 9. № 7. Article 156. https://doi.org/10.3390/toxics9070156
- Buser H.-R., Haglund P., Muller M.D., Poiger T., Rappe C. Discrimination and thermal degradation of toxaphene compounds in capillary gas chromatography when using split/splitless and on-column injection // Chemosphere. 2000. V. 41. P. 473. https://doi.org/10.1016/S0045-6535(99)00481-6
- Зенкевич И.Г., Фахретдинова Л.Н. Термическая нестабильность моноалкиловых эфиров фталевой кислоты в условиях газохроматографического разделения // Аналитика и контроль. 2015. Т. 19. № 2. С. 175. (Zenkevich I.G., Fakhretdinova L.N. Thermal instability of phthalic acid monoalkyl esters in the conditions of gas chromatographic separation // Analytics and Control. 2015. V. 19. № 2. P. 175. https://doi.org/10.15826/analitika.2015.19.2.013)
- Зенкевич И.Г., Подольский Н.Е. Выявление соединений, нестабильных в условиях газохроматографического разделения. Незамещенные гидразоны ароматических карбонильных соединений // Аналитика и контроль. 2017. Т. 21. № 2. С. 125. (Zenkevich I.G., Podol’skii N.E. Revealing compounds unstable in the conditions of gas chromatographic separation. Non-substituted hydrazones of aromatic carbonyl compounds // Analytics and Control. 2017. V. 21. № 2. P. 125. https://doi.org/10.15825/analitika.2017.21.2.002)
- Kornilova T.A., Ukolov A.I., Kostikov R.R., Zenkevich I.G. A simple criterion for gas chromatography/mass spectrometric analysis of thermally unstable compounds, and reassessment of the by-products of alkyl diazoacetate synthesis // Rapid Commun. Mass Spectrom. 2013. V. 27. № 3. P. 461. https://doi.org/10.1002/rcm.6457
- Kupriyanova O.V., Shevyrin V.A., Sadykova R.G., Shafran Y.M. Identification of thermolabile positional isomers of N-(2-hydroxyethyl)-2-(dimethoxyphenyl)ethanamines (NBOH series) using chromatography and mass spectrometry methods // Drug Test. Anal. 2024. V. 16. № 11. P. 1271. https://doi.org/10.1002/dta.3648
- Зенкевич И.Г., Елисеенков Е.В., Уколов А.И. Сложности хромато-масс-спектрометрической идентификации продуктов свободно-радикального хлорирования индана // Журн. аналит. химии. 2024. Т. 79. № 8. С. 1073. (Zenkevich I.G., Eliseenkov E.V., Ukolov A.I. Identification complexity of the products of free-radical chlorination of indane by gas chromatography – mass spectrometry // J. Anal. Chem. 2024. V. 79. № 8. P. 1073. https://doi.org/10.1134/S1061934824700461)
- Зенкевич И.Г., Morocho Zambrano D.S. Логистическая регрессия для аппроксимации результатов газохроматографического анализа термически нестабильных соединений // Аналитика и контроль. 2024. Т. 28. № 1. С. 27. (Zenkevich I.G., Morocho Zambrano D.S. Logistic regression for approximating the results of gas chromatographic analysis of thermally unstable compounds // Analytics and Control. 2024. V. 28. № 1. P. 27. https://doi.org/10.15826/analitika.2024.28.1.003)
- The NIST Mass Spectral Library (NIST/EPA/NIH EI MS Library, 2017 Release). Software/Data Version; NIST Standard Reference Database, Number 69, August 2017. National Institute of Standards and Technology, Gaithersburg, MD 20899. http://webbook.nist.gov (accessed November 2024).
- Heasley G.E., Bower T.R., Dougharty K.W., Easdon J.C., Heasley V.L., Arnold S.A. et al. Electrophylic addition to indene and indenone: Factors effecting syn addition // J. Org. Chem. 1980. V. 45. № 25. P. 5150. https://doi.org/10.1021/jo01313a025
- Suter C.M., Lutz G.A. Some reactions of indene chloride and the cis- and trans-chlorohydrins. Mechanism of ketone formation // J. Am. Chem. Soc. 1938. V. 60. № 6. P. 1360. https://doi.org/10.1021/ja01273a024
- Porter D.H., Suter C.M. Some brominated derivatives of indene and indane // J. Am. Chem. Soc. 1935. V. 57. № 11. P. 2022. https://doi.org/10.1021/ia01314a002
- Eckard A.D., Ledwith A., Sherrington D.C. Cationic polymerization of indene // Polymer. 1071. V. 12. № 7. P. 444. https://doi.org/10.1016/0032-3861(71)90062-0
- Akbulut U., Eren S., Toppare L.K. Electronegative cationic polymerization of indene // J. Macromol. Sci. Part A – Chem. 1984. V. 21. № 3. P. 335. https://doi.org/10.1080/00222338408069467
- Ионова Е.И., Ляпков А.А., Бондалетов В.Г., Бондалетова Л.И., Петренко Т.В. Полимеризация индена при действии тетрахлорида титана // Кокс и химия. 2009. Т. 52. № 11. С. 34. (Ionova E.I., Lyapkov A.A., Bondaletov V.G., Bondaletova L.I., Petrenko T.V. Indene polymerization under the action of titanium tetrachloride // Coke Chem. 2009. V. 52. № 11. P. 496. https://doi.org/10.3103/S1068364X09110076)
- Grob K., Neukom H.P. Dependence of the splitting ratio on column temperature in split injection capillary gas chromatography // J. Chromatogr. 1982. V. 236. № 2. P. 297.
- Schomburg G., Hausig U., Husmann H. Quantitation in capillary gas chromatography with emphasis on the problems of sample introduction // J. Sep. Sci. 1985. V. 8. № 9. P. 566. https://doi.org/10.1002/jhrc.1240080918
- Зенкевич И.Г., Олисов Д.А. Эффекты дискриминации состава проб при их дозировании в капиллярные колонки с делением потока // Журн. аналит. химии. 2019. Т. 74. № 7. С. S40. (Zenkevich I.G., Olisov D.A. Effects of the discrimination of sample composition with the use of split injection into gas chromatographic capillary columns // J. Anal. Chem. 2019. V. 74. № 7. P. S760. https://doi.org/10.1134/S1061934819070190)
- Денисов Е.Т. Кинетика гомогенных реакций. М: Высшая школа, 1988. 391 с. (Denisov E.T. Kinetics of homogeneous reactions. Moscow, High School Publ., 1988. 391 p.).
- Мариничев А.Н., Вязьмин С.Ю., Домнин И.Н. Спектрофотометрическое изучение твердофазной топохимической полимеризации дииновых арилкарбаматов и логистическое представление результатов // Журн. прикл. химии. 2005. Т. 78. № 10. С. 1662. (Marinichev A.N., Viaz’min S.Yu., Domnin I.N. Spectrophotometric study of solid-phase topochemical polymerization of diyne arylcarbamates and logistic representation of results // Russ. J. Appl. Chem. 2005. V. 78. № 10. P. 1662. https://doi.org/10.1007/s11167-005-0582-7)
- Гущина С.В., Косман В.М., Зенкевич И.Г. Некоторые закономерности окисления кверцетина кислородом воздуха в водных растворах // Вестн. Санкт-Петербург. гос. ун-та. сер. физ.-хим. 2009. № 1. С. 96. (Guschina S.V., Kosman V.M., Zenkevich I.G. Some regularities of the quercetin oxidation by atmospheric oxygen in aqueous solutions // VestniK of St. Petersburg State Univ. Ser. Phys.-Chem. 2009. № 1. P. 96.)
- Мариничев А.Н., Морозова Т.Е., Зенкевич И.Г. Применение логистической регрессии при количественном анализе методом последовательных стандартных добавок // Успехи современного естествознания. 2013. № 11. С. 152. (Marinichev A.N., Morozova T.E., Zenkevich I.G. Application of logistic regression in quantitative analysis by successive standard additions // Successes of Contemporary Natural Science. 2013. № 11. P. 152.)
- Зенкевич И.Г., Мариничев А.Н. Оценка октановых чисел гомологов с использованием логистической регрессии // Журн. общ. химии. 2014. Т. 84. № 1. С. 1767. (Zenkevich I.G., Marinichev A.N. Estimation of octane rating of hydrocarbon homologs using logistic regression // Russ. J. Gen. Chem. 2014. V. 84. № 11. P. 2066. https://doi.org/10.1134/S1070363214110024)
- Шапиро Е.А., Дяткин А.Б., Нефедов О.М. Диазоэфиры. М.: Наука, 1992. 151 с. (Shapiro E.A., Dyatkin A.B., Nefedov O.M. Diazoesters. Moscow: Nauka Publ. 1992. 151 p.)
- Strausz O.P., De Minh T., Gunning H.E. Rearrangement and polar reaction of carboxymethylene in 2-propanol // J. Am. Chem. Soc. 1968. V. 90. № 6. P. 1660.
- Xie Z., Liao W.J., Cao J., Guo L.-P., Verpoort F., Fang W.-H. Mechanistic insight into the rhodium-catalyzed O-H insertion reaction: A DFT study // Organometallics. 2014. V. 33. № 10. P. 2448. https://doi.org/10.1012/om401092h
- Schils R., Simal F., Demonceau A., Noels A.F., Eremenko I.L., Sidorov A.A., Nefedov S.E. Insertion of carbenes unto O-H bonds of alcohols catalyzed by platinum complexes // Tetrahedron Lett. 1998. V. 39. P. 7849. https://doi.org/S0040-4039(98)01725-0
- Curtius T. Ueber Diazoessigsaure und ihre Derivate // J. Prakt. Chemie. 1888. Bd. 38. C. 396. https://doi.org/10.1002/prac.18880380130
- Синтезы органических препаратов. М: Изд. иностранной литературы, 1949. Т. 2. С. 609.
- Zenkevich I.G., Moeder M., Koeller G., Schrader S. Using new structurally related additive schemes in the precalculation of GC retention indices of polychlorinated hydroxybiphenyls on HP-5 stationary phase // J. Chromatogr. A. 2004. V. 1025. P. 227. https://doi.org/10.1016/j.chroma.2003.10.16
Supplementary files
