A voltammetric sensor based on carbon fiber paper modified with shungite and copper formazanate for the determination of lidocaine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A highly sensitive sensor based on carbon fiber paper modified with a shungite–copper formazanate composite is presented for the voltammetric determination of lidocaine. The synthesized organometallic complex, composite, and modified electrode are characterized by infrared spectroscopy, high-resolution mass spectrometry, elemental analysis, scanning electron microscopy, and cyclic and linear sweep voltammetry. The twofold increase in the current of the lidocaine oxidation peak on the modified electrode compared to the unmodified one is associated with the sensitizing effect of the composite modifier, which is due to an increase in the electroactive area and the number of lidocaine binding sites on the electrode surface. The sensor exhibits a wide dynamic range from 2 to 2120 µM with a low limit of detection of 0.18 µM lidocaine and high sensitivity of 0.755 µA/V µM. The interelectrode and intraelectrode repeatability of the analytical signal do not exceed 3.5%. The sensor response is stable within three weeks. The developed sensor was used for the determination of lidocaine in pharmaceuticals. The results of an analysis of real samples demonstrated good reproducibility (RSD ≤ 5.5%) and recovery (98–102%).

Full Text

Restricted Access

About the authors

M. А. Bukharinova

Ural State Economic University

Email: sny@usue.ru
Russian Federation, 620144, Yekaterinburg

N. Yu. Stozhko

Ural State Economic University

Author for correspondence.
Email: sny@usue.ru
Russian Federation, 620144, Yekaterinburg

T. G. Fedorchenko

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: sny@usue.ru
Russian Federation, 620990, Yekaterinburg

G. N. Lipunova

Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: sny@usue.ru
Russian Federation, 620990, Yekaterinburg

E. V. Shabrova

Ural State Economic University

Email: sny@usue.ru
Russian Federation, 620144, Yekaterinburg

Е. I. Khamzina

Ural State Economic University

Email: sny@usue.ru
Russian Federation, 620144, Yekaterinburg

А. V. Tarasov

Ural State Economic University

Email: sny@usue.ru
Russian Federation, 620144, Yekaterinburgс

References

  1. Фелькер Е.Ю., Заболотский Д.В., Корячкин В.А., Малашенко Н.С., Колосов А.О., Горбачева Т.В. Эффективность и безопасность внутривенной инфузии лидокаина у детей // Анестезиология и реаниматология. 2021. № 2. C. 50.
  2. Leung Y.L. Lidocaine. Encyclopedia of Toxicology. 3rd Ed. Academic Press, 2014. P. 71.
  3. Stozhko N.Yu., Bukharinova M.A., Khamzina E.I., Tarasov A.V., Sokolkov S.V. Film carbon veil-based electrode modified with Triton X-100 for nitrite determination // Chemosensors. 2020. V. 8. Article 78.
  4. Brainina Kh.Z., Bukharinova M.A., Stozhko N.Yu., Sokolkov S.V., Tarasov A.V., Vidrevich M.B. Electrochemical sensor based on a carbon veil modified by phytosynthesized gold nanoparticles for determination of ascorbic acid // Sensors. 2020. V. 12. Article 1800.
  5. Stozhko N.Yu., Khamzina E.I., Bukharinova M.A., Tarasov A.V. A novel voltammetricsensor based on carbon paper modified by graphite powder for determination of sunset yellow and tartrazine in drinks // Sensors. 2022. V. 22. Article 4092.
  6. Stozhko N.Yu., Khamzina E.I., Bukharinova M.A., Tarasov A.V., Kolotygina V.Yu., Lakiza N.V., Kuznetcova E.D. Carbon paper modified with functionalized poly(diallyldimethylammonium chloride) graphene and gold phytonanoparticles as a promising sensing material: Characterization and electroanalysis of Ponceau 4R in food samples // Nanomaterials. 2022. V. 12. Article 4197.
  7. Matos C.R.S., Souza Jr H.O., Santana T.B.S., Candido L.P.M., Cunha F.G.C., Sussuchi E.M., Gimenez I.F. Cd1-xMgxTe semiconductor nanocrystal alloys: Synthesis preparation of nanocomposites with graphene-based materials , and electrochemical detection of lidocaine and epinephrine // Microchim. Acta. 2017. V. 184. P. 1755.
  8. Zhang J., Liu J., Zhang Y., Yu F., Wang F., Peng Z., Li Y. Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer // Microchim. Acta. 2018. V. 185. Article 78.
  9. Yang G., Zhao F. A novel electrochemical sensor for the determination of lidocaine based on surface-imprinting on porous three-dimensional film // J. Mater. Chem. C. 2014. V. 2. P. 10201.
  10. Rahbar N., Ramezani Z., Ghanavati J. CuO-nanoparticles modified carbon paste electrode for square wave voltammetric determination of lidocaine: Comparing classical and Box–Behnken optimization methodologies // Chin. Chem. Lett. 2016. V. 27. P. 837.
  11. Alham A., Ibraimov A., Alimzhanova M. Mamedova M. Natural material shungite as solid-phase extraction sorbent for the extraction of red synthetic dye Ponceau 4R from tap water, wine, and juice // Food Anal. Methods. 2022. V. 15. P. 707.
  12. Diyuk V.E., Ishchenko O.V., Loginova O.B., Melnik L.M., Kisterska L.D., Garashchenko V.V., Turchun O.V. Recovery of adsorption properties of shungite // J. Superhard Mater. 2019. V. 41. P. 221.
  13. Bukharinova M.A., Khamzina E.I., Stozhko N.Yu., Tarasov A.V. Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite // Anal. Chim. Acta. 2023. V. 1272. Article. 341481.
  14. Kajal N., Singh V., Gupta R., Gautam S. Metal organic frameworks for electrochemical sensor applications: A review // Environ. Res. 2022. V. 204. Article 112320.
  15. Бузыкин Б.И., Липунова Г.Н., Первова И.Г. Прогресс в химии формазанов. Синтез-свойства-применение. М.: Научный мир, 2009. 296 с.
  16. Garkani Nejad F., Beitollahi H., Sheikhshoaie I. A UiO-66-NH2 MOF/PAMAM dendrimer nanocomposite for electrochemical detection of tramadol in the presence of acetaminophen in pharmaceutical formulations // Biosensors. 2023. V. 13. Article 514.
  17. Tajik S., Sharifi F., Aflatoonian B., Di Bartolomeo A. A new electrochemical sensor for the detection of ketoconazole using carbon paste electrode modified with sheaf-like Ce-BTC MOF nanostructure and ionic liquid // Nanomaterials. 2023. V. 13. Article 523.
  18. Zhao J., Kan Y., Chen Z., Li H., ZhangW. MOFs-modified electrochemical sensors and the application in the detection of opioids // Biosensors. 2023. V. 13. Article 284.
  19. Ольховикова Н.Б., Русинова Л.И., Шмелев Л.В., Липунова Г.Н., Клюев Н.А., Ельцов А.В. Метилирование 1-арил-3-фенил-5-(бензтиазолил)формазанов // Журн. орг. химии. 1988. Т. 58. С. 1626.
  20. Бузыкин Б.И., Липунова Г.Н., Сысоева Л.П., Русинова Л.И. Химия формазанов. М.: Наука, 1992. С. 233.
  21. Tabrizi L., Dao D.Q., Vu T.A. Experimental and theoretical evaluation on the antioxidant activity of a copper(II) complex based on lidocaine and ibuprofen amide-phenanthroline agents // RSC Adv. 2019. V. 9. P. 3320.
  22. Saad A.S., Al-Alamein A.M. A., Galal M.M., Zaazaa H.E. voltammetric determination of lidocaine and its toxic metabolite in pharmaceutical formulation and milk using carbon paste electrode modified with C18 Silica // J. Electrochem. Soc. 2019. V. 166. P. B103.
  23. Крылов Ю.Ф., Бобырев В.М. Фармакология. М.: ВУНМЦ МЗ РФ, 1999. 352 с.
  24. Krishnakumar A., Kumar Mishra R., Kadian S., Zareei A., Heredia Rivera U., Rahimi R. Printed graphene-based electrochemical sensor with integrated paper microfluidics for rapid lidocaine detection in blood // Anal. Chim. Acta. 2022. V. 1229. Article 340332.
  25. Rahbar N., Ramezani Z., Babapour A. Electro-oxidation mechanism and direct square-wave voltammetric determination of lidocaine with a carbon-paste electrode // Jundishapur J. Nat. Pharm. Prod. 2015. V. 10. Article 19382.
  26. Nouri-Nigjeh E., Permentier H.P., Bischoff R., Bruins A.P. Lidocaine oxidation by electrogenerated reactive oxygen species in the light of oxidative drug metabolism // Anal. Chem. 2010. V. 82. P. 7625.
  27. Сурмилло А.С. N-Деалкилирование аминов при обеззараживании воды / Тез. докл. X Всерос. конф. с междунар. участием “Масс-спектрометрия и ее прикладные проблемы”. 2023. Москва. 30 октября–03 ноября 2023. С. 55.
  28. Oliveira R.T.S., Salazar-Banda G.R., Ferreira V.S., Oliveira S.C., Avaca L.S. Electroanalytical determination of lidocaine in pharmaceutical preparations using boron-doped diamond electrodes // Electroanalysis. 2007. V. 19. P. 1189.
  29. Burns D.T., Danzer K., Townshend A. Use of the terms “Recovery” and “Apparent recovery” in analytical procedures (IU-752 PAC Recommendations 2002) // Pure Appl. Chem. 2002. V. 74. P. 2201.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. The structural formula of lidocaine.

Download (31KB)
3. Scheme 2. Scheme of synthesis of copper formazanate (Cu CA).

Download (81KB)
4. Scheme 3. The proposed structure of the lidocaine–SiOC complex.

Download (65KB)
5. Scheme 4. The proposed mechanism of lidocaine oxidation at Sh-Cook/UVE.

Download (58KB)
6. Fig. 1. IR spectra of copper (Cuoh) formazanates, shungite (I), and iCook composite.

Download (204KB)
7. Fig. 2. Fragment of the mass spectrum of the CuOK complex, simulated for the composition C40H30N12O2S2ClCu2 and experimental.

Download (163KB)
8. Fig. 3. SEM images of (a) an unmodified carbon fiber paper-based electrode (UVE) and (b) a modified Sh-SiOC/UVE. Accelerating voltage of 20 kV in the scattered electron mode.

Download (184KB)
9. 4. The effect of (a) the mass fraction of the CuOR complex in the composite modifier and (b) the number of layers of the I-CuOK modifier on a carbon fiber electrode on the 0.64 mM lidocaine signal. Background: universal buffer solution with pH 8.

Download (92KB)
10. Fig. 5. (a) Cyclic voltammograms of 1 mM K4[Fe(CN)6] solution recorded in 0.1 M KCl using an unmodified carbon fiber electrode (UVE) and a modified Sh-SiOC/UVE. (b) Chronoamperograms of a 1 mM solution of K4[Fe(CN)6] recorded at E = 0.6 V on different electrodes. Insert: dependence I = f(t-1/2), obtained from chronoamperometric measurements for different electrodes.

Download (157KB)
11. 6. Cyclic voltammograms of 0.64 mM lidocaine solution on different electrodes: 1 ‒ UVE, 2 ‒ SiOK/UVE, 3 ‒ Sh/UVE, 4 ‒ Sh-SiOK/UVE. Background: universal buffer solution with pH 8, v = 50 mV/s.

Download (86KB)
12. Fig. 7. (a) Cyclic voltammograms of 0.64 mM lidocaine solution, registered on the S-SiOC/UVE in a universal buffer solution with pH 6.5, 7.0, 7.5, 8.0, 8.3, 8.8, 9.0, 9.6, v = 50 mV/s; (b) the effect of the pH of the universal buffer solution on the oxidation peak potential of 0.64 mM lidocaine solution; (c) the dependence of the maximum current of 0.64 mM lidocaine solution on the pH of the universal buffer solution.

Download (191KB)
13. Fig. 8. Linear voltammograms with correction of the baseline of 0.32 mM lidocaine solution in a universal buffer solution with pH 9 at the rate of potential expansion 50, 75, 100, 125, 150, 175, 200, 250, 300 mV/sec.

Download (90KB)
14. Fig. 9. Derived voltammograms registered on W-Cook/UVE at different concentrations of lidocaine. Insert: dependence of the analytical signal on the concentration of lidocaine in solution.

Download (142KB)

Copyright (c) 2024 Russian Academy of Sciences