Iron compounds in steppe soils of the East European Plain, connection with soil processes and paleoclimatic aspects
- Authors: Malyshev V.V.1, Alekseev A.O.1
-
Affiliations:
- Institute of physical, chemical and biological problems of soil science of the Russian Academy of Sciences
- Issue: No 9 (2024)
- Pages: 1207–1221
- Section: SOIL MINERALOGY AND MICROMORPHOLOGY
- URL: https://vestnikugrasu.org/0032-180X/article/view/683590
- DOI: https://doi.org/10.31857/S0032180X24090048
- EDN: https://elibrary.ru/WMBOYG
- ID: 683590
Cite item
Abstract
The total content, forms and mineralogy of iron compounds of soils of forest-steppe, steppe and semi-desert zones from the central chernozem regions to the Caspian lowland and from the Southern Urals to the Kerch Strait have been studied. The subjects of the study were Сhernozems (n = 40), Kastanozems (n = 15), Solonetz (n = 7), Calcisols (n = 7). Based on the results obtained, characteristic features of the distribution of total iron content, mass balance (τFe,Zr), forms of iron compounds, magnetic susceptibility () and mineralogy of iron in soil profiles were revealed. The distribution of τFe,Zr in the studied soils reflects the processes and conditions of soil formation, as well as lithological features. For a more detailed understanding of the process of transformation of iron compounds in steppe soils, studies of granulometric fractions (<2, 2–5, 5–10, 10–50 μm) by the method of Mossbauer spectroscopy and magnetic susceptibility were carried out on samples of Luvic Chernozem, Haplic Kastanozem, Haplic Kastanozem (Endosalic, Cambic)) and Luvic Calcisol (Endosalic). It is shown that a large fraction of Fe3+ in the silt fraction is contained in highly dispersed oxides and hydroxides in the superparamagnetic state. In humus-accumulative horizons of steppe soils, a decrease in the Fe2+ fraction in aluminosilicates due to weathering processes is recorded. The revealed interrelation of the goethite/(hematite + goethite) ratio in humus-accumulative horizons of soils with climatic parameters allows to use it in future paleoclimatic reconstructions. The Mössbauer spectroscopy records a significant increase in non-silicate iron in the accumulative humus horizons of steppe soils in comparison with the soil-forming rock, which is an important confirmation of the formation of iron oxides during soil formation. When comparing methods for determining non-silicate iron in soils (Mössbauer spectroscopy and Mehr-Jackson extraction), significant differences in the results were revealed due to a decrease in free forms of iron when isolated by the chemical method.
About the authors
V. V. Malyshev
Institute of physical, chemical and biological problems of soil science of the Russian Academy of Sciences
Author for correspondence.
Email: vladmalyscheff@yandex.ru
Russian Federation, Pushchino, 142290
A. O. Alekseev
Institute of physical, chemical and biological problems of soil science of the Russian Academy of Sciences
Email: vladmalyscheff@yandex.ru
Russian Federation, Pushchino, 142290
References
- Алексеев А.О., Алексеева Т.В. O формировании лепидокрокита в почвах // Почвоведение. 2000. № 10. С. 1203–1210.
- Алексеев А.О., Алексеева Т.В. Оксидогенез железа в почвах степной зоны. М.: ГЕОС, 2012. 204 с.
- Алексеев А.О., Алексеева Т.В., Махер Б. А. Магнитные свойства и минералогия соединений железа в степных почвах // Почвоведение. 2003. № 1. С. 62–74.
- Алексеев А.О., Ковалевская И.С., Моргун Е.Г., Самойлова Е.М. Магнитная восприимчивость почв сопряженных ландшафтов // Почвоведение. 1988. № 8. С. 27–35.
- Алексеев А.О., Калинин П.И., Алексеева Т.В. Почвенные индикаторы параметров палеоэкологических условий на юге Восточно-Европейской равнины в четвертичное время // Почвоведение. 2019. № 4. С. 389–399. https://doi.org/10.1134/S1064229319040021
- Алексеев А.О., Митенко Г.В., Шарый П.А. Количественные оценки палеоэкологических изменений в позднем голоцене на юге Восточно-Европейской равнины на основе магнитных свойств почв // Почвоведение. 2020. № 12. С. 1425–1435.
- Алексеева Т.В., Алексеев А.О., Демкин В.А., Алексеева В. А., Соколовска З., Хайнос М., Калинин П.И. Физико-химические и минералогические диагностические признаки солонцового процесса в почвах Нижнего Поволжья в позднем голоцене // Почвоведение. 2010. № 10. С. 1171–1189. https://doi.org/10.1134/S1064229310100029
- Алексеева Т.В., Алексеев А.О., Ковалевская И.С., Осина Г.Н., Моргун Е.Г. Минералогический состав илистой фракции почв сопряженных ландшафтов Ставропольской возвышенности // Почвоведение. 1988. № 9. С. 113–124.
- Бабанин В.Ф., Бойченко В.О., Минеева Н.С., Филатов А.В. Изучение различных форм соединений железа и их роль в процессе почвообразования // Известия высших учебных заведений. Сер. Химия и химическая технология. 2017. № 7. С. 91–96. https://doi.org/10.6060/tcct.2017607.5443
- Бабанин В.Ф., Трухин В.И., Карпачевский Л.О., Иванов А.В., Морозов В.В. Магнетизм почв. Ярославль–М.: Изд. ЯГТУ, 1995. 219 c.
- Водяницкий Ю. Н. Селективность реактива Мера–Джексона к Fe-содержащим минералам в почвах лесной зоны умеренного пояса // Почвоведение. 2004. № 4. С. 452–466.
- Водяницкий Ю.Н. Соединения железа и их роль в охране почв. М.: Почв. ин-т им. В.В. Докучаева, 2010. 282 c.
- Водяницкий Ю.Н., Шоба С.А. Дискуссионные вопросы интерпретации результатов химической экстракции соединений железа из почв // Почвоведение. 2014. № 6. С. 697–697.
- Воробьева Л.А. Химический анализ почв: учебник. М.: Изд-во МГУ, 1998. 272 с.
- Зонн С.В. Железо в почвах. М.: Наука, 1982. 207 с.
- Касимов Н.С. Геохимия степных и пустынных ландшафтов. М.: Изд-во МГУ, 1988. 253 с.
- Иванов А.В. Магнитное и валентное состояние железа в твердой фазе почв. Автореф. дис. … д. б. н. М., 2003. 41 с.
- Марфунин А.С. Спектроскопия, люминесценция и радиационные центры в минералах. М.: Недра, 1975. 327 c. https://doi.org/10.1007/978-3-642-67112-8
- Перельман А.И., Касимов Н.С. Геохимия ландшафта. М.: Изд-во МГУ, 1999. 762 с.
- Татьянченко Т.В., Алексеева Т.В., Калинин П.И. Минералогический и химический составы разновозрастных подкурганных палеопочв южных Ергеней и их палеоклиматическая интерпретация // Почвоведение. 2013. № 4. С. 379–379.
- Чухров Ф.В., Ермилова Л.П., Горшков А.И. Гипергенные окислы железа в геологических процессах. М.: Наука, 1975. 207 с.
- Хитров Н.Б. Выбор диагностических критериев существования и степени выраженности солонцового процесса в почвах // Почвоведение. 2004. № 1. С. 18–31.
- Alekseev A.O., Shary P.A., Malyshev V.V. Magnetic susceptibility of soils as an ambiguous climate proxy for paleoclimate reconstructions // Quaternary International. 2023. V. 661. P. 10–21.
- Alekseeva T., Alekseev A., Maher B., and Demkin V. Late Holocene climate reconstructions for the Russian steppe, based on mineralogical and magnetic properties of buried palaeosols // Palaeogeography, Palaeoclimatology, Palaeoecology. 2007. V. 249 (1–2). P. 103–127. https://doi.org/10.1016/j.palaeo.2007.01.006
- Balsam W.L., Ellwood B.B., Ji J., Williams E.R., Long X., El Hassani A. Magnetic susceptibility as a proxy for rainfall: worldwide data from tropical and temperate climate // Quaternary Science Reviews. 2011. V. 30. P. 2732–2744. https://doi.org/10.1016/j.quascirev.2011.06.002
- Brimhall G.H., Dietrich W.E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis // Geochim. Cosmochim. Acta. 1987. V 51 (3). P. 567–587. https://doi.org/10.1016/0016-7037(87)90070-6
- Carrillo‐González R., Šimůnek J., Sauvé S., and Adriano D. Mechanisms and pathways of trace element mobility in soils // Advances in agronomy. 2006. V. 91. P. 111–178. https://doi.org/10.1016/S0065-2113(06)91003-7
- Colombo C., Palumbo G., He JZ, Pinton R., Cesco S. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes // Journal of Soils and Sediments. 2014. V. 14. P. 538–548. https://doi.org/10.1007/s11368-013-0814-z
- Cornell R.M., and Schwertmann U. The iron oxides: structure, properties, reactions, occurrences, and uses. Weinheim: Wiley-vch. 2003. 664 p. https://doi.org/10.1515/corrrev.1997.15.3-4.533
- Dearing J.A., Livingstone I.P., Bateman M.D., White K. Paleoclimate records from OIS 8.0–5.4 recorded in loess-paleosol sequences on the Matmata Plateau, southern Tunisia, based on mineral magnetism and new luminescence dating // Quaternary International. 2001.V. 76/77. P. 43–56.
- Gao P., Nie J., Breecker D.O., Gallagher T., Serach L., and Alonso‐Zarza A.M. Similar magnetic enhancement mechanisms between Chinese loess and alluvial sediments from the Teruel Basin, NE Spain, and paleoclimate implications // Geophysical Research Letters. 2022. V. 49. P. e2021GL096977. https://doi.org/10.1029/2021GL096977
- Geiss C.E., Zanner C.W. Sediment magnetic signature of climate in modern loessic soils from the Great Plains // Quaternary International. 2007. V. 162–163. P. 97–110. https://doi.org/10.1016/j.quaint.2006.10.035
- Hao Q., Oldfield F., Bloemendal J., Torrent J., and Guo Z. The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy // Journal of Geophysical Research: Solid Earth. 2009. V. 114. P. B12101. https://doi.org/10.1029/2009JB006604
- Heller F., and Liu T.S. Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China // Geophysical Research Letters. 1986. V. 13. P. 1169–1172. https://doi.org/10.1029/GL013i011p01169
- Hyland E., Sheldon N.D., Van der Voo R., Badgley C., Abrajevitch A. A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions // Geological Society of America Bulletin. 2015. V. 127. P. 975–981. http://dx.doi.org/10.1130/B31207.1
- Jiang Z., Liu Q., Roberts A.P., Dekkers M.J., Barrón V., Torrent J., and Li S. The magnetic and color reflectance properties of hematite: From Earth to Mars // Reviews of Geophysics. 2021. V. 60(1). P. e2020RG000698. https://doi.org/10.1029/2020RG000698
- Jordanova D., Jordanova N. Updating the significance and paleoclimate implications of magnetic susceptibility of Holocene loessic soils // Geoderma. 2021. V. 391. P. 114982. https://doi.org/10.1016/j.geoderma.2021.114982.
- Kalinin P.I., Kudrevatykh I.Y., Malyshev V.V., Pilguy L.S., Buhonov A.V., Mitenko G. V., and Alekseev A.O. Chemical weathering in semi-arid soils of the Russian plain // Catena. 2021. V. 206. P. 105554. https://doi.org/10.1016/j.catena.2021.105554
- Kraemer S.M. Iron oxide dissolution and solubility in the presence of siderophores // Aquatic sciences. 2004. V. 66. P. 3–18. https://doi.org/10.1007/s00027-003-0690-5
- Kudrevatykh I., Kalinin P., Mitenko G., Alekseev A. The role of plant in the formation of the topsoil chemical composition in different climatic conditions of steppe landscape // Plant and Soil. 2021. V. 465(1–2). P. 453–472. https://doi.org/10.1007/s11104-021-05019-3
- Liu Q.S., Jackson M.J., Banerjee S.K., Maher B.A., Deng C.L., Pan Y.X., and Zhu R. Mechanism of the magnetic susceptibility enhancements of the Chinese loess // Journal of Geophysical Research. 2004. V. 109(B12). https://doi.org/10.1029/2004JB003249
- Long X., Ji J., Barrón V., and Torrent J. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction // Quaternary Science Reviews. 2016. V. 150. P. 264–277. https://doi.org/10.1016/j.quascirev.2016.08.031
- Maher B.A., Alekseev A., Alekseeva T. Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation // Palaeogeography, Palaeoclimatology, Palaeoecology. 2003. V. 201(3–4). P. 321–341. https://doi.org/10.1016/S0031-0182(03)00618-7
- Maher B.A., and Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols // Quaternary Research .1995. V. 44. P. 383–391. https://doi.org/10.1006/qres.1995.1083
- Maxbauer D.P., Feinberg J.M, and Fox D.L. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges // Earth Science Review. 2016. V. 155. P. 28–48.
- Meng X., Li G.K., Long X., Li S., and Ji J. Quantifying soil goethite/hematite ratios: A new method based on diffuse reflectance spectra // Geophysical Research Letters. 2023. V. 50(8). P. e2022GL102280. https://doi.org/10.1029/2022GL102280
- Moreno-Jimenez E., Plaza C., Saiz H., Manzano R., Flagmeier M., and Maestre F.T. Aridity and reduced soil micronutrient availability in global drylands. Nature sustainability. 2019. V. 2(5). P. 371–377. https://doi.org/10.1038/s41893-019-0262-x
- Murad E. Properties and behavior of iron oxides as determined by Mössbauer spectroscopy // Iron in soils and clay minerals. Dordrecht: Springer Netherlands. 1988. V. 217. P. 309–350. https://doi.org/10.1007/978-94-009-4007-9_12
- Murad E., Cashion J. Mössbauer spectroscopy of environmental materials and their industrial utilization. N.Y.: Springer, 2003. 418 p. https://doi.org/10.1007/978-1-4419-9040-2
- Roberts A.P., Zhao X., Heslop D., Abrajevitch A., Chen Y.H., Hu P., Jiang Z., Liu Q., and Pillans B.J. Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward // Geoscience Letters. 2020. V. 7(1). P. 8. https://doi.org/10.1186/s40562-020-00157-5
- Schwertmann U. Solubility and dissolution of iron oxides // Plant and Soil. 1991. V. 130. P. 1–25. https://doi.org/10.1007/BF00011851
- Schwertmann U. Transformation of hematite to goethite in soils // Nature. 1971. V. 232(5313). P. 624–625. https://doi.org/10.1038/232624a0
- Schwertmann U., Fitzpatrick R.W. Iron minerals in surface environments // Catena supplement. 1992. V. 21. P. 7–30.
- Schwertmann U., Kämpf N. Properties of goethite and hematite in kaolinitic soils of Southern and Central Brazil // Soil Science. 1985. V. 139(4). P. 344–350.
- Schwertmann U., Taylor R.M. Iron oxides // Minerals in soil environments. 1989. V. 1. P. 379–438. https://doi.org/10.2136/sssabookser1.2ed.c8
- Sheldon N.D., Tabor N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols // Earth-science reviews. 2009. V. 95(1–2). P. 1–52.
- Stucki J.W., Goodman B.A., and Schwertmann U. Iron in soils and clay minerals. Springer Dordrecht. 1988. 894 p. https://doi.org/10.1007/978-94-009-4007-9
- Taylor R.M., Schwertmann U. Maghemite in soils and its origin: II. Maghemite syntheses at ambient temperature and pH 7 // Clay Minerals. 1974. V. 10(4). P. 289–298. https://doi.org/10.1180/claymin.1974.010.4.07
- Torrent J., Barrón V. Diffuse reflectance spectroscopy of iron oxides // Encyclopedia of surface and Colloid Science. 2002. V. 1. P. 1438–1446.
- Vandenberghe R.E., De Grave E. Application of Mössbauer spectroscopy in earth sciences // Mössbauer spectroscopy. Berlin: Springer, 2013. P. 91–185. https://doi.org/10.1007/978-3-642-32220-4_3
- Yoo K., Fisher B., Ji J., Aufdenkampe A., and Klaminder J. The geochemical transformation of soils by agriculture and its dependence on soil erosion: An application of the geochemical mass balance approach // Sci. Total Environ. 2015. V. 521. P. 326–335. https://doi.org/10.1016/0016-7037(87)90070-6
Supplementary files
