Methacrylate-Containing n-Derivatives of N,N-Diethyl-4-(Phenyldiazenyl)Aniline as Initiators in Two-Photon Polymerization

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of using a number of methacrylate-containing N,N-diethyl-4-(phenyldiazenyl)anilines with various para-substituents with respect to the azo group (-H, -Br, -NO2) as photoinitiators of radical polymerization is considered. The electrochemical and photoluminescent properties of these compounds have been studied. In the presence of azo dyes, two-photon photopolymerization of pentaerythritol triacrylate was carried out by focused radiation from a femtosecond laser with a wavelength of 780 nm. Structures with minimum linear element sizes of 94 ± 5 nm were obtained by DLW nanolithography, as well as 3D microstructures of complex architecture.

Texto integral

Acesso é fechado

Sobre autores

M. Arsenyev

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Rússia, Nizhny Novgorod

E. Zhiganshin

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: zhiganshinae@mail.ru
Rússia, Nizhny Novgorod

D. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

Email: zhiganshinae@mail.ru
Rússia, Dolgoprudny

V. Ilyichev

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Rússia, Nizhny Novgorod

R. Kovylin

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Rússia, Nizhny Novgorod

A. Vitukhnovsky

Moscow Institute of Physics and Technology (National Research University); P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Rússia, Dolgoprudny; Moscow

S. Chesnokov

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Jaiswal A., Rastogi C. K., Rani S., Singh G. P. et al. // iScience. 2023. V. 26. № 106374.
  2. Zhiganshina E.R., Arsenyev M.V., Chesnokov S.A. // Polym. Sci., B. 2023. V. 65. P. 247.
  3. Zhiganshina E.R., Arsenyev M.V., Chubich D.A. et al. // Eur. Polym. J. 2021. V. 162. P. 110917.
  4. Liu Y.J., Yang J.Y., Nie Y.M. et al. // Microfluid Nanofluidics. 2015. V. 18. P. 427.
  5. Sakellari I., Yin X., Nesterov M.L., Terzaki K. et al. // Adv. Opt. Mater. 2017. V. 5. № 1700200.
  6. Rakhymzhanov A., Gueddida A., Alonso-Redondo E., et al. // Appl. Phys. Lett. 2016. V.108. № 201901.
  7. Zheng C., Jin F., Zhao Yu. et al. // Sens. Actuators B Chem. 2020. V. 304. № 127345.
  8. Otuka A.J.G., Torres B.B.M., Dipold J. et al. // Opt. Mater. Express. 2020. V. 10. № 8. P. 1792.
  9. Fominykh O.D., Sharipova A.V., Balakina M.Yu. // Comput. Mater. Sci. 2019. V. 168. P. 32.
  10. Lu Y., Hasegawa F., Goto T. et al. // J. Mater. Chem. 2003. V. 14. P. 75.
  11. Beharry A.A., Sadovski O., Woolley G.A. // J. Am. Chem. Soc. 2011. V. 133. P. 19684.
  12. Vivas M.G., Silva D.L., De Boni L. et al. // J. Phys. Chem. B. 2012. V. 116. P. 14677.
  13. Zhou L., Mao J., Ren Y. et al. // Small. 2018. V. 14. № 1703126.
  14. Ghanavatkar C.W., Mishra V.R., Nagaiyan S. // Dyes Pigm. 2021. V. 191. № 109367.
  15. Xu L., Zhang J., Yin L. et al. // J. Mater. Chem. C. 2020. V. 8. P. 6342.
  16. McKenzie L.K., Bryant H.E., Weinstein J.A. // Coord. Chem. Rev. 2019. V. 379. P. 2.
  17. Balakina M.Yu., Shalin N.I., Sharipova A.V., Fominykh O.D. // Mol. Phys. 2020. V. 118. № 21–22. P. 1.
  18. Mendonca C.R., Baldacchini T., Tayalia P., Mazur E. // J. Appl. Phys. 2007. V. 102. № 1. P. 013109.
  19. Tribuzi V., Fonseca R.D., Correa D.S., Mendonca C.R. // Opt. Mater. Express. 2013. V. 3. № 1. P. 21.
  20. Turro N.J. Modern Molecular Photochemistry. University Science Books, 1991. P. 628.
  21. Vijayakumar C., Balan B., Kim M.-J., Takeuchi M. // J. Phys. Chem. C. 2011. V. 115. P. 4533.
  22. Lim S.L., Li N.-J., Lu J.-M. et al. // ACS Appl. Mater. Interfaces. 2009. V. 1. № 1. P. 60.
  23. Qiu F.X., Zhang Q., Yang D.Y. // Mater. Sci. Forum. 2010. V. 663–665. P. 645.
  24. Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals. Amsterdam: Elsevier Inc. Butterworth-Heinemann, 2003.
  25. Eltaboni F., Bader N., El-Kailany R. et al. // J. Chem. Rev. 2022. V. 4. № 4. Р. 313.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1

Baixar (121KB)
3. Fig. 1. CVA curves of azo dyes 1 (a), 2 (b), 3 (c) and 4 (d). MeCN, Ag/AgCl/KCl(us.), 0.1 M (NBu4)ClO4, scanning speed – 200 mV s-1

Baixar (245KB)
4. Fig. 2. Luminescence spectra of polymer samples based on PET and azo dyes 1 (a), 2 (b), 3 (c), 4 (d). In all graphs: curve 1 – Polypet without azo dye; curve 2 – spectrum of polypet with dye registered at room temperature; 3 – spectrum A polypet with a dye registered at 77 K. The excitation wavelength is 405 nm, the radiation power is 100 MW

Baixar (391KB)
5. Fig. 3. SEM-image of linear elements from the composition K5 at magnification × 18000 times

Baixar (201KB)
6. Fig. 4. SEM images of cylindrical spiral 3D microstructures obtained on the K5 composition at magnification of ×400 (a) and ×2500 (b) times

Baixar (151KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024