Research of charge carrier transfer processes in films of colloidal quantum dots of CsPbBr3 perovskites by pump-probe spectroscopy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Colloidal quantum dots of CsPbBr₃ perovskites have been synthesised. The average size and polydispersity of the nanocrystals were determined to be 8.3 nm and 16%, respectively. The nanocrystals were employed in the fabrication of thin films via two distinct methods: drop casting and spin coating. The process of charge carrier transport was investigated through the use of laser femtosecond pump-probe spectroscopy. A proposed interpretation of the time-dependent shift of the lumen peak is presented. The EinsteinSmoluchowski equation was employed to estimate the mobility of charge carriers in the films.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Galyshko

Moscow Institute of Physics and Technology (National Research University)

Email: pevtsov.dn@mipt.ru
Ресей, Dolgoprudnyi

G. Lochin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: pevtsov.dn@mipt.ru
Ресей, Chernogolovka; Dolgoprudnyi

D. Pevtsov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: pevtsov.dn@mipt.ru
Ресей, Chernogolovka; Dolgoprudnyi

A. Aybush

Federal Research Centre for Chemical Physics named after N.N. Semenov, Russian Academy of Sciences

Email: pevtsov.dn@mipt.ru
Ресей, Moscow

F. Gostev

Federal Research Centre for Chemical Physics named after N.N. Semenov, Russian Academy of Sciences

Email: pevtsov.dn@mipt.ru
Ресей, Moscow

I. Shelaev

Federal Research Centre for Chemical Physics named after N.N. Semenov, Russian Academy of Sciences

Email: pevtsov.dn@mipt.ru
Ресей, Moscow

V. Nadtochenko

Federal Research Centre for Chemical Physics named after N.N. Semenov, Russian Academy of Sciences; Lomonosov Moscow State University

Email: pevtsov.dn@mipt.ru

Department of Chemistry

Ресей, Moscow; Moscow

S. Brichkin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: pevtsov.dn@mipt.ru
Ресей, Chernogolovka; Dolgoprudnyi

V. Razumov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: pevtsov.dn@mipt.ru
Ресей, Chernogolovka; Dolgoprudnyi

Әдебиет тізімі

  1. Akkerman Q.A., Rainò G., Kovalenko M.V. et al. // Nature materials. 2018. V. 17. № 5. P 394.
  2. Dey A., Ye J., De A., Debroye E. et al. // ACS nano. 2021. V. 15. № 7. P. 10775.
  3. de Weerd C., Gomez L., Zhang, H. et al. // J. Phys. Chem. C. 2016. V. 120. № 24. P. 13310.
  4. Song J., Li J., Li X. et al. Advanced Materials (Deerfield Beach, Fla.). 2015. V. 27. № 44. P. 7162.
  5. Wu X., Tan L. Z., Shen X. et al. // Science advances. 2017. V. 3. № 7. P. e1602388.
  6. Liu X., Zeng P., Chen S. et al. // Laser & Photonics Reviews. 2022. № 12 (16). P. 2200280.
  7. Mandal S., George L., Tkachenko N. V // Nanoscale. 2019. № 3 (11). P. 862.
  8. Proppe A.H, Jixian X., Randy P.S. et al. // Nano letters. 2018. V. 18. № 11. P. 7052.
  9. Lu Ch., Wright M.W., Ma X. et al. // Chemistry of Materials. 2019. V. 31. № 1. P. 62.
  10. Protesescu L., Yakunin S., Bodnarchuk M.I., et al // Nano Lett. 2015. V. 15. P. 3692.
  11. Kumawat N.K., Swarnkar A., Nag A. et al. // J. Phys. Chem. C. 2018. V. 122. № 25. P. 13767.
  12. Maes J., Balcaen L., Drijvers E. et al. // The Journal of Physical Chemistry Letters. 2018. V. 9. № 11. P. 3093.
  13. Tovstun S.A., Gadomska A.V., Spirin M.G. et al. // Journal of Luminescence. 2022. V. 252. P. 119420.
  14. Zhang Z., Sung J., Toolan D.T. et al. // Nature Materials. 2022. V. 21. № 5. P. 533.
  15. Gilmore R.H., Lee E.M., Weidman, M.C. et al. // Nano letters. 2017. V. 17. № 2. P. 893.
  16. Liu M., Verma S.D., Zhang Z. et al. // Nano Letters. 2021. V. 21. № 21. P. 8945.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Absorption and luminescence spectra of CsPbBr3 CCT solution.

Жүктеу (106KB)
3. Fig. 2. The “excitation-luminescence” matrix of the CCT CsPbBr3 solution.

Жүктеу (113KB)
4. Fig. 3. Time resolution of the CsPbBr3 CT differential absorption matrix at a pumping energy of 45 NJ of a sample produced by (a) drop-casting; (b) spin-coating. The solid red line shows the offset of the peak of illumination relative to the red dotted line indicating the initial position of the peak.

Жүктеу (258KB)
5. 4. Spectral dependence of the optical density difference at different delay times and the dependence of the energies of the illumination peak position on the delay time. Points (a) and (b) are for a sample made by drop-casting; (c) and (d) are for a sample made by spin–coating. All dependences are given for the pumping energy of 45 NJ. In Figures (b) and (d), the purple and red curves represent the shift of the illumination peak for the sample produced by drop–casting and spin-coating, respectively, while the black curve represents the approximation by bi-exponential decay.

Жүктеу (310KB)
6. Fig. 5. Dependence of the characteristic process time on the pumping energy: (a) “slow” and “fast” processes for a sample produced by drop-casting; (b) “slow” and “fast” processes for a sample produced by spin-coating; (c) “slow” process for two samples. Dotted lines represent a “fast” process, solid lines indicate a “slow” process for each of the samples.

Жүктеу (166KB)
7. Fig. 6. Dependence of the diffusion coefficient and mobility on the pumping energy for samples produced by spin-coating and drop-casting.

Жүктеу (104KB)

© Russian Academy of Sciences, 2024