On Specific Quenching of Tb3+ Ions Radioluminescence in Aqueous Solutions by Hydrogen Atom

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of acceptors of the water radiolysis primary products of the H atom and eaq on the spectra and intensity of the Tb3+ ion radioluminescence and photoluminescence in aqueous solutions of TbCl3 and Tb(NO3)3 is considered. The activation effect of Tb3+ radioluminescence in the presence of H acceptors was revealed, indicating the presence of a specific quenching reaction (Tb3+)* by this radiolysis product, inhibited by its acceptors. An increase in activation was found in the joint presence of H and hydrated electron acceptors in the solution; for acceptors of the latter, a similar activation effect of Tb3+ radioluminescence was established earlier.

Full Text

Restricted Access

About the authors

G. L. Sharipov

Ufa Federal Research Center of the Russian Academy of Sciences

Email: abdr-73@ya.ru
Russian Federation, Ufa

A. M. Abdrakhmanov

Ufa Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: abdr-73@ya.ru
Russian Federation, Ufa

B. M. Gareev

Ufa Federal Research Center of the Russian Academy of Sciences

Email: abdr-73@ya.ru
Russian Federation, Ufa

L. R. Yakshembetova

Ufa Federal Research Center of the Russian Academy of Sciences

Email: abdr-73@ya.ru
Russian Federation, Ufa

References

  1. Kazakov V.P., Sharipov G.L. Radioluminescence of aqueous solutions. M.: Nauka, 1986. 136 p.
  2. Seregina E.A., Seregin A.A., Tikhonov G.V. // High Energy Chem. 2014. V. 48. P. 440; https://doi.org/10.7868/S0023119714060118
  3. Poluektov N.S., Kononenko L.I., Efryushina N.P., Beltyukova S.V. Spectrophotometric and luminescent methods for the determination of lanthanides. Kiev: Naukova Dumka, 1989. 256 p. (in Russian).
  4. Kukinov A.A., Balashova T.V., Ilichev V.A. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16288; https://doi.org/10.1039/C9CP03041G
  5. Cooper D.R., Capobianco J.A., Seuntjens J. // Nanoscale. 2018. V. 10. P. 7821; https://doi.org/10.1039/C8NR01262H
  6. Seregina E.A., Dyachenko P.P., Tikhonov G.V. // Proc. of 14 Int. Conf. on Ion Beam Analysis / VI Europ. Conf. On Accelerators in Applied Research and Technology. Nuclear Instruments and Methods in Physics Research (NIM) B. 2000. P. 161–163.
  7. Kilin S.F., Rozman I.M. // Optika i spektroskopiya. 1963. V. 15. № 4. P. 494 (in Russian).
  8. Stein G., Tomkiewicz M. // Trans. Faraday Soc. 1971. V. 67. P. 1678; https://doi.org/10.1039/TF9716701678
  9. Sharipov G.L., Kazakov V.P. // Russ. Chem. Bull. 1979. V. 28. P. 239; https://doi.org/10.1007/BF00925442
  10. Sharipov G.L., Gareev B.M., Abdrakhmanov A.M., Yakshembetova L.R. // Izvestia Ufimskogo Nauchnogo Tsentra RAN. 2021. № 4. P. 22 (in Russian); https://doi.org/10.31040/2222-8349-2021-0-4-22-29
  11. Pikayev A.K., Shilov V.P., Spitsyn V.I. Radiolysis of aqueous solutions of lanthanides and actinides. M.: Nauka, 1983. 240 p. (in Russian).
  12. Weller A., Zachariasse K. // J. Chem. Phys. 1967. V. 46. P. 4984; https://doi.org/10.1063/1.1840667
  13. Kavarnos G.J., Turro N.J. // Chem. Rev. 1986. V. 86. P. 401; https://doi.org/10.1021/cr00072a005
  14. Shiery R.C., Fulton J.L., Balasubramanian M. et al. // Inorganic Chem. 2021. V. 60. P. 3117; https://doi.org/10.1021/acs.inorgchem.0c03438
  15. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. // J. Phys. Chern. Ref. Data. 1988. V. 17. P. 513; https://doi.org/10.1063/1.555805

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The PH spectrum of terbium chloride solution in H2O (* = 365 nm, dotted line, the spectrum is normalized according to the maximum intensity of the RL spectra) and the RL spectra of terbium chloride and nitrate in H2O (C = 0.005 mol/l) without additives. For clarity of comparison, the RF spectra are shifted by 5 and 10 nm, respectively, relative to the PL spectrum. All spectra were registered under the same conditions (MDR-23)

Download (153KB)
3. Fig. 2. RL spectra of terbium nitrate in H2O (C = 0.005 mol/l) from bottom to top: without additives, in the presence of additives (C = 0.25 mol/l) NaNO3, Na2S2O3, together NaNO3 and Na2S2O3 in equal concentrations, CdCl2 and AgNO3

Download (133KB)
4. Fig. 3. The effect of Q acceptors on the PH intensity of terbium nitrate (C = 0.005 mol/l). From bottom to top: Q ≡ NO3– (NaNO3), S2O32– (Na2S2O3), together NO3– (NaNO3) and S2O32– (Na2S2O3) in equal concentrations, Cd2+ (CdCl2) and Ag+ (AgNO3)

Download (127KB)

Copyright (c) 2024 Russian Academy of Sciences