Spin-Dependent Regulation of The Electronic and Magnetic Properties of Poly(3-Alkylthiophene) Oligomers and Their Composites with Aromatic Nanoadditives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy and spin parameters of poly(3-alkylthiophene) oligomers and their composites with aromatic hydrocarbons are calculated. The coexistence of polarons with different degrees of delocalization in the studied compounds has been identified. Periodic changes in the electronic and spin properties of composites were detected, initiated by the interaction of oligomers with aromatic nanoadditives. The anisotropic parameters of the spin Hamiltonians of the studied systems are obtained and their high-resolution EPR spectra are calculated.

Full Text

Restricted Access

About the authors

V. I. Krinichny

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: kivi@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Hu W., ed. Organic Optoelectronics. 2013, Wiley-VCH Verlag Weinheim. 507.
  2. Khalifeh S. Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems. 1st - Toronto: ChemTec Publishing, 2020. 616.
  3. Szweda R., ed. Third Generation Solar Cells. 2023, Routledge, Taylor & Francis Group. 162.
  4. Ganesamoorthy R., Sathiyan G., Sakthivel P. // Sol. Energy Mater. Sol. Cells. 2017. V. 161. P. 102–148.
  5. Sauvé G. // The Chemical Record. 2019. V. 19. № 6. P. 1078–1092.
  6. Krinichnyi V.I. Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites. Boca Raton, FL: CRC Press Taylor & Francis Group, 2016. 314.
  7. Niklas J., Poluektov O.G. // Adv. Energy Mater. 2017. V. 7. № 10. P. 1602226.
  8. Krinichnyi V.I., Yudanova E.I., Denisov N.N., Bogatyrenko V.R. // Synth. Met. 2020. V. 267. P. 116462.
  9. Krinichnyi V.I., Yudanova E.I., Denisov N.N. // J. Phys. Chem. C. 2022. V. 126. № 9. P. 4495–4507.
  10. Neeze F. // WIREs Comput. Mol. Sci. 2012. V. 2. № 1. P. 73–78.
  11. Mulliken R.S. // J. Chem. Phys. 2004. V. 23. № 12. P. 2343–2346.
  12. Van Landeghem M., Maes W., Goovaerts E., Van Doorslaer S. // J. Magn. Reson. 2018. V. 288. P. 1–10.
  13. Hanwell M.D., Curtis D.E., Lonie D.C. et al. // J. Cheminform. 2012. V. 4. № 1. P. 17.
  14. Stoll S., Schweiger A. // J. Magn. Reson. 2006. V. 178. № 1. P. 42–55.
  15. Brédas J.L., Themans B., Fripiat J.G. et al. // Phys. Rev. B. 1984. V. 29. № 12. P. 6761–6773.
  16. Krinichnyi V.I. // High Energ. Chem. 2023. V. 58. № 1. P. 166–173.
  17. Kim D.H., Park Y.D., Jang Y.S. et al. // Adv. Funct. Mater. 2005. V. 15. № 1. P. 77–82.
  18. Sensfuss S., Al-Ibrahim M. Optoelectronic properties of conjugated polymer/fullerene binary pairs with variety of LUMO level differences // Organic Photovoltaics: Mechanisms, Materials, and Devices (Optical Engineering) Sun S.S., Sariciftci N.S. Boca Raton: CRC Press, 2005. P. 529–557.
  19. Enengl C., Enengl S., Pluczyk S. et al. // ChemPhysChem. 2016. V. 17. № 23. P. 3836–3844.
  20. Devreux F., Genoud F., Nechtschein M., Villeret B. On polaron and bipolaron formation in conducting polymers // Electronic Properties of Conjugated Polymers V. 76. Kuzmany H., Mehring M., Roth S. Berlin: Springer-Verlag, 1987. P. 270–276.
  21. Kuroda S., Marumoto K., Sakanaka T. et al. // Chem. Phys. Lett. 2007. V. 435. № 4–6. P. 273–277.
  22. Brazovskii S., Nattermann T. // Adv. Phys. 2004. V. 53. № 2. P. 177–252.
  23. Shrestha A., Higuchi K., Yoshida S., Higuchi M. // J. Appl. Phys. 2021. V. 130. № 12.
  24. Bernier P. The magnetic properties of conjugated polymers: ESR studies of undoped and doped systems // Handbook of Conducting Polymers, V. 2. Scotheim T.E. – New York: Marcel Dekker, Inc., 1986. P. 1099–1125.
  25. Aguirre A., Gast P., Orlinskii S. et al. // Phys. Chem. Chem. Phys. 2008. V. 10. № 47. P. 7129–7138.
  26. Konkin A., Ritter U., Scharff P. et al. // Synth. Met. 2010. V. 160. № 5–6. P. 485–489.
  27. Krinichnyi V.I. EPR spectroscopy of polymer:fullerene nanocomposites // Spectroscopy of Polymer Nanocomposites, Thomas S., Rouxel D., Ponnamma D. Amsterdam: Elsevier, 2016. P. 202–275.
  28. Krinichnyi V.I., Yudanova E.I., Denisov N.N. et al. // J. Phys. Chem. C. 2021. V. 125. № 22. P. 12224–12240.
  29. Krinichnyi V.I., Herrmann R., Fanghänel E. et al. // Appl. Magn. Reson. 1997. V. 12. № 2–3. P. 317–327.
  30. Jeong H.K., Jin M.H., So K.P. et al. // J. Phys. D: Appl. Phys. 2009. V. 42. № 6. P. 065418.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oligomers of poly(3-alkylthiophenes) (P3AT), poly(3-hydrothiophene) (1, P3HyT, m = 0), poly(3-methylthiophene) (2, P3MeT, m = 1), poly(3-ethylthiophene) (3, P3EtT, m = 2), poly(3-butylthiophene) (4, P3BuT, m = 4), poly(3-hexylthiophene) (5, P3HxT, m = 6), poly(3-octylthiophene) (6, P3OcT, m = 8), poly(3-decylthiophene) (7, P3DeT, m = 10) and poly(3-dodecylthiophene) (8, P3DoT, m = 12), as well as quasi-one-dimensional (Q1D) polyacenes (RA) and quasi-two-dimensional (Q2D) graphene-like polycyclic aromatic hydrocarbons (PH) with different numbers of phenyl rings used in the present work

Download (481KB)
3. Fig. 2. Dependence of the forbidden band width Eg = EHOMO - ELUMO of oligomers P3HyT (1), P3MeT (2), P3EtT (3), P3BuT (4), P3HxT (5), P3OcT (6), P3DeT (7) and P3DoT (8) with different number of monomers n and length of alkyl substituents m, optimised within the framework of the density functional theory (DFT) formalism/density functional theory (DFT), in the Malliken/Mulliken approximation in the Orca package environment according to the procedure described in the Methodology section. In the upper part, schematic structures of positively and negatively charged polarons on the P3AT chains with their corresponding energy sublevels in the forbidden zone of the oligomer are shown. The lines show the dependences calculated from Equation (1) at (top to bottom) a0 = 2.761 eV, b = 5.447 eV, c = 1.669, a0 = 2.078 eV, b = 5.886 eV, c = 1.671, a0 = 0.347 eV, b = 5.029 eV, c = 3.153, and a0 = 0.050 eV, b = 4.003 eV, c = 3.650, respectively

Download (326KB)
4. Fig. 3. Relative variation of charge (a, c, e) and spin (b, d, f) densities on hydrogen 1H (circles), sulfur 32S (triangles) and carbon 12C (squares) nuclei located along the main x-axis within the polaron of the oxidised poly(3-methylthiophene) oligo12mer (schematically shown from above), optimised within the framework of the density functional formalism/theory, calculated by the Malliken method in the Orca software environment following the procedure described in the Methodology section. For comparison, the corresponding parameters previously calculated for sulfur atoms of the oligo12mer P3HyT [16] are shown as open triangles on (c, d)

Download (486KB)
5. Fig. 5. (a) Change in the band gap of the oligo7mer complex P3HyT:PA (1) and P3HyT:PH (2) depending on the number of phenyl rings n; (b) spin density on sulfur nuclei 32S within the extended polaron of composites P3HyT:PA (1) and P3HyT:PH (2) as a function of n. The upper and lower lines on the tab show the EPR spectra of the D-range complexes P3HyT:PA1 and P3MeT:PA1, respectively, calculated using data from Table 4; (c) the band gap of aromatic Q1D PA and Q2D PH molecules depending on the number of their phenyl rings n. The dotted line shows the dependence calculated from equation (1) with a0 = 0.532 eV, b = 8.968 eV and c = 2.647. The structurally optimized P3HyT:PA7 complex is shown in the upper part as an example

Download (283KB)

Copyright (c) 2024 Russian Academy of Sciences