Development of a method for analysis and forecast of the quality of electric power microgrid in the Far North

Cover Page

Cite item

Full Text

Abstract

The article is devoted to the construction of an algorithm for predicting and evaluating the quality of MicroGrid electric power in the Far North. A fragment of the daily schedule of the electrical load of a small settlement in the Far North is given. The system features of electrical energy conversion in isolated power supply systems are shown. A structural model of the MicroGrid power supply system of the Far North has been built. A computational experiment was carried out to assess the quality of electrical energy MicroGrid in the Far North. The potential area for the output of electric energy quality indicators beyond the permissible limits according to GOST 32144 – 2013 is determined.

About the authors

Vladimir Z. Kovalev

Yugra State University

Author for correspondence.
Email: vz_kovalev@mail.ru

Doctor of Technical Sciences, Professor of the Institute of Oil and Gas

Russian Federation, Khanty-Mansiysk

Alexander G. Shcherbakov

Siberian Institute of Business and Information Technologies

Email: scherbacov@yandex.ru

Candidate of Technical Sciences, Associate Professor, Head for the Faculty of Full-time Education

Russian Federation, Omsk

Rustam N. Khamitov

Omsk State Technical University

Email: apple_27@list.ru

Doctor of Technical Sciences, Associate Professor, Professor for the Department of Electrical Engineering

Russian Federation, Omsk

References

  1. Siamanta, Z.C. Conceptualizing alternatives to contemporary renewable energy development: Community Renewable Energy Ecologies (CREE) / Z. C. Siamanta //Journal of Political Ecology.– 2021. – Vol. 28, № 1. – P. 47–69.
  2. Wang, J. The relationship of renewable energy consumption to financial development and economic growth in China / J. Wang, S. Zhang, Q. Zhang // Renewable Energy. – 2021. – Vol. 170. – P. 897–904.
  3. Ansari, M. A. Do renewable energy and globalization enhance ecological footprint: an analysis of top renewable energy countries? / M. A. Ansari, S. Haider, T. Masood // Environmental Science and Pollution Research. – 2021. – Vol. 28, № 6. – P. 6719–6732.
  4. Multifactorial components analysis of the renewable energy sector in the oecd countries and managerial implications / A. M. Androniceanu, I. Georgescu, C. Dobrin, I. V. Dragulanescu // Polish Journal of Management Studies. – 2020. Vol. 22, № 2. – P. 36–49.
  5. Ali, A. Natural Resources Depletion, Renewable Energy Consumption and Environmental Degradation: A Comparative Analysis of Developed and Developing World / A. Ali, M. Audi, Y. Roussel // International Journal of Energy Economics and Policy. – 2021. – Vol. 11, № 3. – P. 251–260.
  6. Alola, A. A. Renewable energy consumption in Coastline Mediterranean Countries: impact of environmental degradation and housing policy / A. A. Alola, U. V. Alola, S. S. Akadiri // Environmental Science and Pollution Research. – 2019. – Vol. 26, № 25. – P. 25789–25801.
  7. Oanh, T. T. K. Renewable Energy, Foreign Direct Investment, Economic Growth, and Environmental Degradation in Asian Countries / T. T. K.Oanh, N. T. Quoc, P. T. N. Dieu // International Journal of Energy, Environment and Economics. – 2021. – Vol. 28, № 2. – P. 87–102.
  8. Design and optimal energy management of community microgrids with flexible renewable energy sources / N. Tomin, V. Shakirov, A. Kozlov [et al.] // Renewable Energy. – 2022. – Vol. 183. – P. 903–921.
  9. Архипова, О. В. Принципы и средства исследования регионально обособленного электротехнического комплекса с позиций системного анализа / О. В. Архипова. – Текст : непосредственный // Омский научный вестник. – 2020. – № 3 (171). – С. 42–46.
  10. Воропай, Н. И. Теория систем для электроэнергетиков / Н. И. Воропай. – Новосибирск : Наука, 2000. – 273 с. – ISBN 5-02-031274-6. – Текст : непосредственный.
  11. Папков, Б. В. Теория систем и системный анализ для электроэнергетиков / Б. В. Папков, А. Л. Куликов. – 2-е издание, исправленное и дополненное. – Москва : Юрайт, 2019. – 470 с. – Текст : непосредственный.
  12. Павлюк, Г. П. Формулировка комплексной оптимизационной задачи построения микрогрид арктического анклава в мультиагентном представлении / Г. П. Павлюк, А. К. Абд-Эльрахим, В. А. Шихин. – Текст : непосредственный // Российская Арктика. – 2020. – № 8. – С. 52–64.
  13. Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multicriteria decision-making method / H. Zhao, B. Li, X. Wang [et al.] // Energy. – 2022. – Vol. 240. – P. 122830.
  14. Assessment of Microgrid Potential in Southeast Asia Based on the Application of Geospatial and Microgrid Simulation and Planning Tools / P. Bertheau, M. M. Hoffmann, A. Eras-Almeida, P. Blechinger // Green Energy and Technology. – 2020. – P. 149–178.
  15. Microgrid Systems: Towards a Technical Performance Assessment Frame / S. Marchand, J. Ungerland, C. Monsalve [et al.] // Energies. – 2021. – Vol. 14, № 8. – P. 2161.
  16. Multi-energy microgrid optimal operation with integrated power to gas technology considering uncertainties / A. Mobasseri, A. A. Ghadimi, M. Tostado-Véliz [et al.] // Journal of Cleaner Production. – 2022. – Vol. 333. – P. 130174.
  17. Архипова, О. В. Методика моделирования регионально обособленного электротехнического комплекса / О. В. Архипова, В. З. Ковалев, Р. Н. Хамитов. – Текст : непосредственный // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2019. – Т. 330, № 1. – С. 173–180.
  18. Hemmati, R. Resilience-oriented adaptable microgrid formation in integrated electricity-gas system with deployment of multiple energy hubs / R. Hemmati, H. Mehrjerdi, S. M. Nosratabadi // Sustainable Cities and Society. – 2021. – Vol. 71. – P. 102946.
  19. Hierarchical energy optimization management of active distribution network with multi-microgrid system / S. Wenzhi, H. Zhang, L. Xinyang [et al.] // Journal of Industrial and Production Engineering. – 2021.
  20. Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies / B. Zhou, J. Zou, D. Xu [et al.] // Journal of Modern Power Systems and Clean Energy. – 2021. – Vol. 9, № 3. – P. 463–476.
  21. An Economical Energy Management Strategy for Viable Microgrid Modes / S. Abid, N. Javaid, T. A. Alghamdi [et al.] // Electronics (Switzerland). – 2019. – Vol. 8, № 12. – P. 1442.
  22. An expected-cost realization-probability optimization approach for the dynamic energy management of microgrid / J. Zhu, Y. Zhuo, J. Chen [et al.] // International Journal of Electrical Power & Energy Systems. – 2022. – Vol. 136. – P. 107620.
  23. Наумов, А. А. Обеспечение требуемого качества электрической энергии / А. А. Наумов. – doi: 10.30724/1998-9903-2020-22-1-85-92. – Текст : непосредственный // Известия высших учебных заведений. Проблемы энергетики. – 2020. – Т. 22, № 1. – С. 85–92.
  24. Rani, M. D. Power quality assessment in grid connected mode hybrid microgrid with various loads / M. D. Rani, M. V. G. Rao, P. S. Prakash // Journal of Theoretical and Applied Information Technology. – 2021. – Vol. 99, № 18. – P. 4241–4252.
  25. Review of model predictive control for power system with large-scale wind power grid-connected / L. Ye, P. Lu, Y. Zhao [et al.] // Zhongguo Dianji Gongcheng Xuebao. – 2021. – Vol. 41, № 18. – P. 6189–6197.
  26. Elkholy, A Harmonics assessment and mathematical modeling of power quality parameters for low voltage grid connected photovoltaic systems / A. Elkholy // Solar Energy. – 2019. – Vol. 183. – P. 315–326.
  27. A novel unbalanced power flow analysis in active AC-DC distribution networks considering PWM convertors and distributed generations / S. Mousavizadeh, M.-R. Haghifam, B. T. Ghanizadeh [et al.] // International Journal of Electrical Power & Energy Systems. – 2022. – Vol. 138. – P. 107938.
  28. Optimal Configuration of Wind-Solar-Hydrogen Multi-Energy Complementary Microgrid With Demand Side / W. Chen, W. Fu, Y. Han [et al.] // Xinan Jiaotong Daxue Xuebao. – 2021. – Vol. 56, № 3. – P. 640–649.
  29. Voltage stability enhancement in grid-connected microgrid using enhanced dynamic voltage restorer (EDVR) / A. Iqbal, A. Waqar, S. Haider [et al.] // AIMS Energy. – 2021. – Vol. 9, № 1. – P. 150–177
  30. ГОСТ 32144–2013. Нормы качества электрической энергии в системах электроснабжения общего назначения : межгосударственный стандарт : издание официальное : утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 22 июля 2013 г. № 400-ст : введен впервые : дата введения 2014-07-01. – Москва : Стандартинформ, 2014. – 19 с. – Текст : непосредственный.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Yugra State University

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies