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Abstract—The paper derives closed form expressions for transient and steady-state operation of a DC-

DC converter with single switched capacitor. To this end, the result of each switching is considered as a 

point in the iterative process, and the function between the points is reconstructed. As opposed to the com-

monly accepted approach, when each of the topologies is approximated by a first order circuit, the proposed 

analysis is carried out for second order circuits. This allows obtaining the waveform of output voltage ripple 

and paves the way to more accurate calculation of equivalent resistance. The obtained analytical expres-

sions were verified by simulations and an excellent agreement between the results was found. 

Index terms—charge pump, discrete-time systems, equivalent resistance, switched capacitor converter.  

 
Introduction 

Switched capacitor converters (SCCs) are favored in some applications due to low EMI and compatibil-

ity with IC technology. Over the past few decades, ongoing research has shifted towards sophisticated SCCs 

with large number of capacitors and advanced control circuits. However, only a few studies use analytical 

methods. The analysis presented in this paper is based on the method of difference equations (Gardner & 

Barnes, 1942), (Tsypkin, 1964), (Derusso, Roy, & Close, 1965), which allows finding the solution for the 

transient and steady-state operation. Although this method is unified, it was applied previously only to the 

switched inductor converters (Nerone, 2008), (Shoihet & Slonim, 2010), (Krihely, Slonim, & Ben-Yaakov, 

2012). However, some analytical methods for analysis of switched capacitor circuits that bear resemblance 

of the proposed one, were presented in (Lamantia, Maranesi, & Radrizzani, 1994), (Vitchev, 2006), 

(Karagozler, Goldstein, & Ricketts, 2012), (Ramezani & Yakovlev, 2013). 

Let us consider the SCC shown schematically in Fig. 1(a). It comprises four switches       with on-

resistances      . The corresponding pair of switches is turned on/off by two non-overlapping clocks    

and    shown in Fig. 1(b). Thus, during    the capacitor    is charged by     through   ,    and then, during 

  , is discharged to the load through   ,   . Thus, we have two topologies, which are considered separately 

in Sections II. Applying to each topology the Kirchhoff’s voltage and current laws (KVL and KCL), we 

write a system of two first-order differential equations. These equations are then solved using the Laplace 

transform. The solution for the first topology defines the initial conditions for the second one. This enables 

us to compose a system of two first-order difference equations, which is solved using the Z-transform. Thus, 

for a given period,  , we know the initial values of state variables and functions according to which these 

variables change. This is the solution is closed form. 
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Fig. 1: Considered SCC (a) and two non-overlapping clocks    and    (b). 
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Differential Equations 

a) First topology 

The switches    and    in Fig. 1(a) are turned on during           , where   is the number of 

period. Thus, in the first topology (Fig. 2),         . 
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Fig. 2: First topology of the considered SCC. 

The KVL and KCL equations for this circuit are:  
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Let us write (1) in the Laplace domain using 
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The solution of (3) can be written as: 
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The inverse Laplace transform of (4) is: 
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Using      and 
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we can rewrite (7) as: 
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b) Second topology 

The switches    and    in Fig. 1(a) are turned on during         (   ) , such that in the se-

cond topology (Fig. 3)         . 

C1 Ro
+

Co
+

i1

i2

i3

k

R2

Vo

 

Fig. 3: Second topology of the considered SCC. 

The KVL and KCL equations for this circuit are: 
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Using (2), we write (11) in the Laplace domain: 
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The inverse Laplace transform of (13) is: 
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Since for the second topology        , the initial conditions will be    ( )     (  ) and    ( )  
   (  ), whereas        . 

Difference Equations 

Substituting (14) and (15) into (16), we obtain the recurrent equations: 
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Now, substituting (9) into (17), we obtain the difference equations: 
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Before we proceed to the solution of (19), let us consider the steady-state operation, where 
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substituting (21) into (19), we have 
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The solution of (22) is: 
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Let us write (19) in the Z-domain using 
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Since (26) is represented in the form of partial fractions, we can apply the inverse Z-transform to 

each term separately: 
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Simulation Results 

To verify the obtained analytical expressions (9), (17) and (28), the circuit shown in Fig. 4 was simulated in 

PSIM 9.0. Since the PSIM bidirectional switches have zero on-resistance, two external resistors corresponding to 

   and    in Fig. 2 and Fig. 3 were added. The parameters of the circuit in Fig. 4 are as follows:        , 

   ( )     ( )    ,          ,         ,        ,         and         . 
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Fig. 4: Simulation circuit for the voltage-halving SCC. 

Since       and      , the expressions (10) and (18) are reduced to: 
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These constants are substituted into (20) and then into (28), which sets the initial conditions for (9) and 

(17). The voltages across    and    during the first ten periods (       ) is shown Fig. 5, which com-

pares the MathCAD calculation and PSIM simulation. 
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Fig. 5: Voltages across    and    for        , MathCAD (a) and PSIM (b). 

The horizontal scale is        ⁄ , i.e. each division is  . 

The voltages in Fig. 5 were measured at the points    and are given in Table I along with the relative error,  . 
Table I: Measured values of the voltages in Fig. 5. 

  
   ( )  [%] 

   ( )  [%] 
Calc. Simul. Calc. Simul. 

1 2.5146 2.5046 0.398 0.5174 0.5119 1.074 

2 3.4986 3.4937 0.140 0.9542 0.9449 0.984 

3 3.9147 3.9144 0.008 1.3381 1.3259 0.920 

4 4.1172 4.1193 0.051 1.6815 1.6670 0.870 

5 4.2366 4.2397 0.073 1.9909 1.9747 0.820 

6 4.3211 4.3254 0.010 2.2706 2.2531 0.777 

7 4.3890 4.3943 0.121 2.5236 2.5054 0.726 

8 4.4474 4.4534 0.135 2.7526 2.7339 0.684 

9 4.4991 4.5055 0.142 2.9601 2.9410 0.649 

10 4.5454 4.5455 0.002 7.1478 7.1282 0.627 

Fig. 6 compares the MathCAD calculation and PSIM simulation for         . Note that at 

      the SCC reaches the steady-state. 
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Fig. 6: Voltages across    and    for         , MathCAD (a) and PSIM (b). 

The horizontal scale is         ⁄ , i.e. each division is    . 

The steady-state voltages are shown Fig. 7. Their discrete values were calculated by (23) and then sub-

stituted as the initial conditions into (9) and (17). 
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Fig. 7: Steady-state voltages across    and    for           . 

Conclusion 

Based on the method of difference equations the closed form expressions for the voltages across the ca-

pacitors in the voltage-halving SCC were derived. The solution of these equations allows us to predict the 

SCC behavior in both the transient and steady-state operation. That is for a given period,  , we know the ini-

tial values of the voltages and functions according to which these voltages change. The obtained expressions 

were verified by simulations. As evident from Table I, the deviation between the theoretical and simulation 

results does not exceed 1.1%. The used method however, is very complex even in the case of the two-phase 

SCC and its extension to the multi-phase SCC will apparently require some special assumptions. 
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