ЭЛЕКТРОЭНЕРГЕТИКА

НАКОПИТЕЛИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В СИСТЕМАХ ДЕЦЕНТРАЛИЗОВАННОГО ЭЛЕКТРОСНАБЖЕНИЯ

Владимиров Леонид Вячеславович

кандидат технических наук, доцент кафедры радиоэлектроники и электроэнергетики Сургутского государственного университета, Сургут, Россия E-mail: vladimirov_lv@surgu.ru

Предмет исследования: повышение надежности и качества электроснабжения децентрализованных электроэнергетических систем.

Цель исследования: анализ современных технологий накопления электрической энергии для повышения эффективности работы систем децентрализованного электроснабжения потребителей.

Методы и объекты исследования: обзор и синтез реализуемых моделей и методов накопления электроэнергии.

Основные результаты исследования: представлены рекомендации по использованию накопителей электрической энергии для повышения эффективности децентрализованных систем электроснабжения бытовых и промышленных потребителей.

Ключевые слова: возобновляемые источники энергии, накопители электрической энергии, аккумуляторные батареи, супермаховик, суперконденсатор.

ELECTRIC ENERGY STORAGE DEVICES IN DECENTRALIZED POWER SUPPLY SYSTEMS

Leonid V. Vladimirov

Candidate of Technical Sciences,
Associate Professor of the Department of Radio
Electronics
and Electric Power Engineering
Surgut State University,
Surgut, Russia
E-mail: vladimirov_lv@surgu.ru

Subject of research: improving the reliability and quality of power supply of decentralized power systems.

Purpose of research: analysis of modern technologies for storing electrical energy to improve the efficiency of decentralized power supply systems to consumers.

Methods and objects of research: review and synthesis of implemented models and methods of energy storage.

Main results of research: recommendations are presented for the use of electrical energy storage devices to improve the efficiency of decentralized power supply systems for household and industrial consumers.

Keywords: renewable energy sources, electric energy storage devices, batteries, super flywheel, super capacitor.

ВВЕДЕНИЕ

Одной из основных задач является поиск эффективных и надежных способов электроснабжения промышленных и гражданских объектов. Для обеспечения электрической энергией малых и удаленных поселений, промышленных объектов, таких как нефтяные и газовые месторождения, возможно применение систем децентрализованного электроснабжения, включающих в свой состав как дизельные электрические станции (ДЭС), так и возобновляемые источники энергии (ВИЭ). Такие системы представляет собой энергетический комплекс, способный обеспечить электроэнергией потребителей, в том числе и первой категории надежности электроснабжения, при выполнении соответствующих требований. Важность решения этой задачи в условиях Ханты-Мансийского автономного округа обусловлена наличием отдаленных населенных пунктов и потребителей, работающих изолированно. Для изолированных энергосистем характерна высокая стоимость электроснабжения, недостаточная обеспеченность топливно-энергетическими ресурсами, низкий уровень резервирования и надежности электроснабжения [1]. Подобные населенные пункты находятся на территориях Березовского, Кондинского, Октябрьского, Белоярского, Нижневартовского,

Сургутского, Ханты-Мансийского муниципальных районов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Существуют различные варианты построения систем электроснабжения удаленных объектов. В качестве основного источника электроснабжения могут выступать газотурбинные или газопоршневые электрические станции. Такой подход получил широкое распространение в практике эксплуатации нефтяных и газовых месторождений, накоплен широкий опыт применения подобных источников электрической энергии. В большинстве случаев подобные системы работают не автономно, а параллельно с внешней энергосистемой, что повышает надежность их работы, но при этом значительно усложняет соблюдение требований к оперативно-диспетчерскому управлению [2].

Для электроснабжения менее энергоемких потребителей актуально применение ДЭС как единственного источника электрической энергии либо в совокупности с солнечными или ветровыми электрическими станциями. Эффект от применения энергетических комплексов будет выше, если в совокупности с ними использовать накопители энергии (НЭ) [3], что позволит решить ряд проблем, таких как провалы напряжения, несовпадение графиков электрических нагрузок и графиков генерации электрической энергии (актуально при наличии ВИЭ в качестве источника питания), повышение надежности электроснабжения, а также позволит снизить затраты на строительство воздушных линий электропередач, подстанций, экономить моторное

топливо в случае использования в качестве источника модульных ДЭС. На сегодняшний день отсутствует широкая практика использования НЭ в системах электроснабжения потребителей. Схема энергетического комплекса и подключения НЭ представлена на рисунке 1.

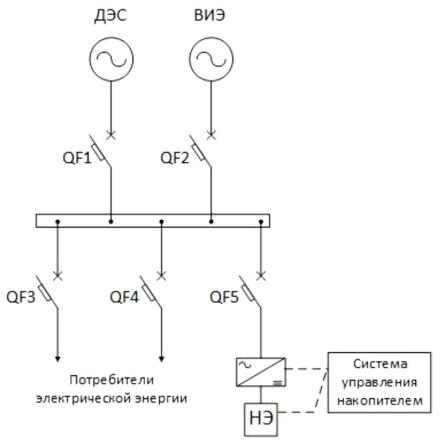


Рисунок 1. Схема энергетического комплекса и подключения накопителя энергии

Провал напряжения – это снижение уровня напряжения ниже установленного порогового значения [4]. Причиной возникновения провалов напряжения могут являться пуск асинхронных и синхронных электрических двигателей, несимметричные режимы работы в системе электроснабжения, наброс нагрузки и т. д.

Неравномерность графиков электрических нагрузок вызвана особенностями технологического цикла производства, изменением потребления электроэнергии бытовыми потребителями в течение суток, что приводит к ряду негативных последствий, из которых наиболее выражены снижение надежности электроснабжения, отклонение показателей качества электрической энергии, сокращение сроков эксплуатации оборудования и увеличение эксплуатационных расходов [5]. В периоды пиковых нагрузок часть энергии может быть получена от НЭ, что позволяет

оптимизировать режим работы генерирующих источников и сократить их установленную мощность [6].

Существующие НЭ можно условно разделить на три основные группы по принципу их действия:

- механические инерционные накопители;
- электрохимические накопители;
- электромагнитные накопители.

Механические инерционные накопители, или маховики, известны человеку с древних времен. Принцип действия маховика основан на накоплении кинетической энергии и последующем ее преобразовании. Запасаемая маховиком энергия может быть определена по формуле:

$$E = 0.5J\omega^2, \tag{1}$$

где J – момент инерции маховика, кг/м²; ω – угловая скорость, рад/с.

Из (1) следует, что запас накапливаемой маховиком энергии может быть увеличен двумя способами: увеличением скорости вращения (угловой скорости) и массы тела маховика. Увеличение скорости вращения приводит к росту потерь энергии и вероятному разрушению тела маховика. Эти недостатки можно нивелировать, если использовать магнитные подвесы ротора и

композиционные материалы. На рисунке 2 представлена конструкция механического инерционного накопителя, совмещенного с мотором-генератором.

К электрохимическим накопителям электрической энергии относятся различного рода аккумуляторные батареи. Их можно классифицировать по материалу пластин и химическому составу электролита.

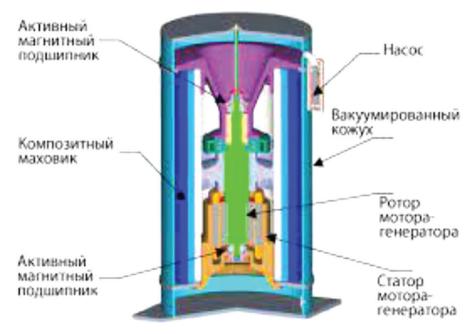


Рисунок 2. Инерционный накопитель электрической энергии

Свинцово-кислотные аккумуляторы (СКА) наиболее распространены благодаря отработанной технологии производства и большому опыту их эксплуатации. Их можно разделить по назначению на стартерные, тяговые и буферные батареи. Технология изготовления СКА имеет низкую стоимость, относительно высокий срок службы, средний уровень саморазряда (до 40 % в год), большое число циклов заряда/разряда (до 1000 циклов при глубине разряда не более 80 %). К недостаткам следует отнести низкий КПД (около 75 %), низкую экологичность и эксплуатационные затраты [7].

Никель-кадмиевые аккумуляторы (Ni-Cd) имеют более высокую энергоемкость по сравнению с СКА и нашли применение в стационарных и мобильных системах. Данный тип аккумуляторов обладает существенным недостатком – эффектом памяти при неполном разряде или заряде, что требует соблюдения правил эксплуатации и алгоритмов заряда/разряда. Никель-металлгидридные аккумуляторы (Ni-MH) являются разновидностью никель-кадмиевых, но при этом практически не имеют эффекта памяти

и обладают более высокими энергетическими характеристиками.

Литий-ионные аккумуляторные батареи (Li-lon) характеризуются высоким значением удельной энергоемкости, допускают глубокий разряд и не имеют эффекта памяти. Кроме того, низкий уровень саморазряда и большое количество циклов заряда/разряда определили широкое распространение и использование данного типа аккумуляторных батарей, в том числе совместно с ВИЭ. Применение систем управления и контроля заряда позволяет продлить ресурс батарей и снизить скорость их деградации. Можно выделить две основные электрохимические схемы: литий-кобальт и литий-железо-фосфат (LiFePo,). Последний весьма успешно применяется при создании батарей, способен отдавать практически весь накопленный литий, сохраняя при этом устойчивость. Благодаря ограниченной проводимости катодного материала они пожаро- и взрывобезопасны по сравнению с другими типами литий-ионных батарей, обладают более низкой стоимостью. В таблице 1 представлено сравнение различных типов аккумуляторных батарей.

 ϕ

Таблица 1. Сравнительная характеристика аккумуляторных батарей

	Удельная энергоемкость, Вт*ч/кг	Удельная мощность, Вт*кг	кпд, %	Величина саморазряда, % в месяц	Срок службы, лет	Количество циклов заряда/ разряда, ед.
СКА	40	18	75	4	15	400–1000
Ni-Cd	60	30	90	10	20	2 500–3 000
Ni-MH	70	40	90	12	20	3 000–3 500
Li-lon	170	100	95	4	7	7 500
LiFePo ₄	140	90	95	4	7	7 000

Важным фактором при использовании аккумуляторных батарей является их масшта-бируемость, т. е. возможность использования как в системах накопления малой мощности, так и для построения крупномасштабных НЭ. Для повышения рабочего напряжения и емкости батареи отдельные элементы (ячейки) соединяются последовательно и последовательно-параллельно.

К электромагнитным накопителям относятся сверхпроводниковые индукционные накопители (СПИН) и суперконденсаторы. Суперконденсатор представляет собой

двухслойный конденсатор, в котором вместо диэлектрика использован ионопроводящий электролит. Они отличаются малым временем заряда/разряда, что позволяет использовать их для покрытия пиковых нагрузок или при наличии резкопеременных нагрузок и устранения провалов напряжения. Также суперконденсаторы нашли применение в системах питания силовых электроустановок на транспорте. В таблице 2 представлено сравнение аккумуляторных батарей и суперконденсаторов.

Таблица 2. Сравнение характеристик аккумуляторных батарей и суперконденсаторов

Параметр	Аккумуляторные батареи	Суперконденсаторы	
Время зарядки	1–6 ч	0,3–30 сек	
Время разрядки	0,3–3 ч	0,3–30 сек	
Удельная энергоемкость, Вт*ч/кг	40–170	1–10	
Количество циклов заряда/разряда, ед.	<10 000	>500 000	
Удельная мощность, Вт*кг	<500	<10 000	

ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Накопители энергии способны существенно повысить эффективность децентрализованных систем электроснабжения бытовых и промышленных потребителей. В периоды пониженного потребления электрической энергии НЭ могут накапливать энергию с последующим ее потреблением в часы пиковых нагрузок, могут использоваться как источник резервного питания и средство компенсации провалов напряжения. При использовании солнечных и ветровых электрических станций НЭ обеспечивают резервирование и хранение электрической энергии, согласование режимов работы источников и потребителей.

Исходя из результатов аналитического обзора следует, что для создания систем накопления электрической энергии в больших объемах перспективным является применение механических инерционных накопителей, или супермаховиков. При малой и средней установленной мощности НЭ более эффективно применение литий-ионных аккумуляторных батарей и суперконденсаторов.

СПИСОК ЛИТЕРАТУРЫ

 Analysis of technological changes in integrated intelligent power supply systems / Y. L. Zhukovskiy, V. V. Starshaia, D. E. Batueva, A. D. Buldysko // Innovation-Based Development of the Mineral Resources Sector: Challenges

- and Prospects: 11th conference of the Russian-German Raw Materials. Leiden, 2018. P. 246–258.
- Чудновец, С. П. Накопители электрической энергии для систем генерирования электрической энергии (аналитический обзор) / С. П. Чудновец, С. А. Харитонов. Текст: непосредственный // Научный вестник Новосибирского государственного технического университета. 2013. № 1 (50). С. 163–172.
- 3. Хлюпин, П. А. Накопители электрической энергии для распределенных энергетических систем / П. А. Хлюпин. DOI 10.32464/2618-8716-2019-2-4-219-230. Текст: непосредственный // Силовое и энергетическое оборудование. Автономные системы. 2019. Т. 2, № 4. С. 219—230.
- 4. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения : межгосударственный стандарт : утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 22 июля 2013 г. № 400-ст : введен впервые : дата введения 2014-07-01. Москва : Стандартинформ, 2014. 16 с. Текст : непосредственный.
- 5. Третьяков, Е. А. Повышение качества электроэнергии в системах электроснабжения с резервированием от дизель-генераторных установок / Е. А. Третьяков, А. В. Мещеряков. DOI: 10.18822/byusu202302133-143. Текст : непосредственный // Вестник Югорского государственного университета. 2023. Т. 19, № 2. С. 133—143.
- 6. Волошин, Е. А. Исследование балансов мощности при внедрении возобновляемых источников энергии и накопителей электрической энергии в электрическую сеть / Е. А. Волошин, О. А. Онисова, А. А. Наволочный. DOI 10.24160/1993-6982-2022-3-11-22. Текст: непосредственный // Вестник Московского энергетического института. Вестник МЭИ. 2022. № 3. С. 11—22.
- Electricity Storage and renewables: costs and markets to 2030. – Abu Dhabi : Int. Renew. Energy Agency, 2017. – 132 p.