УДК 621.313.333 DOI: 10.18822/byusu20220493-102

О НЕКОТОРЫХ РЕЖИМАХ РАБОТЫ ПОГРУЖНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Ковалев Владимир Захарович

доктор технических наук, профессор, руководитель ОП «Электроэнергетика и электротехника» Института нефти и газа, ФГБОУ ВО «Югорский государственный университет» Ханты-Мансийск, Россия E-mail: vz_kovalev@mail.ru

Балыклов Егор Станиславович

аспирант Института нефти и газа, ФГБОУ ВО «Югорский государственный университет» Ханты-Мансийск, Россия E-mail: balyklov2842@mail.ru

Хусаинов Эмиль Ильшатович

аспирант Института нефти и газа, ФГБОУ ВО «Югорский государственный университет» Ханты-Мансийск, Россия E-mail: husainov-e@mail.ru

Объект исследования: асинхронный погружной электродвигатель в составе электроприводного центробежного насоса.

Предмет исследования: неноминальные режимы работы асинхронных погружных электродвигателей, включая режимы расклинивания.

Цель исследования: построение методики исследования работы асинхронных погружных электродвигателей при неноминальных режимах работы, включая вариации частоты питающего напряжения и его величины.

Перечень методов исследования: теория электромеханического преобразования энергии, цифровое моделирование, статистическая обработка данных, методы планирования эксперимента.

Основные результаты исследования: обоснована актуальность исследований погружных электродвигателей в неноминальных условиях; построена методика исследования работы асинхронных погружных электродвигателей при неноминальных режимах работы; проведено тестирование предложенной методики на примере режима расклинивания УЭЦН.

Ключевые слова: асинхронный погружной электродвигатель, математическая модель, преобразование энергии, цифровой эксперимент.

ON SOME OPERATING MODES OF A SUBMERSIBLE INDUCTION ELECTRIC MOTOR

Vladimir Z. Kovalev

Doctor of Technical Sciences, Professor, Head of Department "Electrical Power Engineering and Electrical Engineering", Institute of Oil and Gas, Yugra State University Khanty-Mansiysk, Russia E-mail: vz_kovalev@mail.ru

Egor S. Balyklov

Postgraduate student of the Institute of Oil and Gas, Yugra State University Khanty-Mansiysk, Russia E-mail: balyklov2842@mail.ru

Emil I. Husainov

Postgraduate student of the Institute of Oil and Gas, Yugra State University Khanty-Mansiysk, Russia E-mail: husainov-e@mail.ru

Object of research: induction submersible electric motor as a part of electric drive centrifugal pump. Subject of the research: non-nominal operation modes of induction submersible electric motors, including modes of wedging.

Purpose of research: creation of research methodology of operation of induction submersible electric motors at non-nominal modes of operation, including variation of frequency of feeding voltage and its magnitude.

Methods of research: theory of electromechanical transformation of energy, digital modeling, statistical data processing, methods designing of experiments.

Main results of research: the relevance of submersible electric motors research in non-nominal conditions is substantiated; the technique of asynchronous submersible electric motors operation research in non-nominal operating modes is built; the proposed technique is tested on the example of the ESP unit wedging mode.

Keywords: induction submersible motor, mathematical model, energy conversion, digital experiment.

Введение

На территории России, по данным за 2021 год, количество действующих нефтяных скважин превышало 130 тысяч единиц. Основным типом механизированного фонда нефтедобычи по-прежнему остаются установки электроцентробежных насосов (УЭЦН) [1, стр.95]. Привод центробежного насоса, как правило, осуществляется погружным асинхронным электрическим двигателем (ПЭД). Отметим, что начинает возрастать и доля синхронных электродвигателей, несмотря на их большую стоимость. Указанное выше значительное количество ПЭД в составе УЭЦН, определяет, как надежность всего процесса добычи нефти, так и направление работ, направленных на уменьшение времени внутрисменных простоев, при эксплуатации фонда скважин. Одно из направлений таких работ вызвано эксплуатацией скважин содержащих механические примеси высоких концентраций в нефтесодержащей жидкости. Отмеченное обстоятельство может приводить к частым заклиниваниям УЭЦН. Соответственно требуется создать условия для повторного запуска скважин. При этом появляется ряд требований к ПЭД: создание максимального момента допускаемого конкретной конструкцией УЭЦН, ограничение на величину тока потребляемого в режиме расклинивания. Ограничения на величину тока в режиме расклинивания обусловлены возникающим тепловым режимом ПЭД и соответствующей деградацией изоляции обмотки статора ПЭД. С другой стороны, для обеспечения максимального момента в режиме расклинивания, требуется «максимальный» ток [2]. Разрешение возникшего противоречия с необходимостью требует построения математической модели ПЭД в режиме расклинивания и последующего применения процедур оптимизации, для определения параметров системы управления [3]. Определяющим фактором здесь становится необходимость управления ПЭД находящимся в условиях нестационарных воздействий, в том числе температурных [4,5]. Что, в конечном итоге, сводится к предиктивному управлению по математической модели ПЭД с непрерывной идентификацией ее параметров [6-11].

Результаты и обсуждение

В направлении реализации данного подхода предлагается использовать методы планирования эксперимента – эквивалентирование энергетических зависимостей ПЭД полиномами вида [12-16]:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n + b_{12} x_1 x_2 + \dots + b_{n-1,n} x_{n-1} x_n + b_{11} x_1^2 + \dots + b_{nn} x_n^2, \quad (1)$$

где y – энергетическая характеристика ПЭД; x_i – энергетические параметры; b_i – коэффициенты модели в поле ее применимости.

Нахождение коэффициентов модели (1), выявление ее оптимального состава выполняется в рамках основных положений теории МПЭ [12,15], в результате требуется проведение Nопытов над объектом (в нашем случае – ПЭД в составе УЭЦН), подчиненных определенным правилам. Отметим, что в данной работе вычислительные эксперименты – моделируют реальную работу ПЭД в неноминальных условиях.

После ряда преобразований уравнения (1), можно получить матричную форму записи для искомых коэффициентов модели:

$$B = C^{-1} X^{T} Y, \qquad (2)$$

где $C = X^T X$, X – матрица планирования.

Потребуем для матрицы X – наличия свойств ортогональности:

$$\sum_{j=1}^{N} x_{kj} x_{ij} = \sum_{j=1}^{N} x_{ij} x_{kj} = 0, \qquad (3)$$

где индексами k и i – обозначены номера столбцов в матрице X.

Одновременно потребуем для матрицы Х наличия свойств симметричности:

$$\sum_{j=1}^{N} x_{ij} = 0.$$
 (4)

Тогда коэффициенты рассчитываются по [12]:

$$b_{i} = \sum_{j=1}^{N} x_{ij} y_{j} / \sum_{j=1}^{N} x_{ij}^{2} .$$
(5)

Выполнение поставленных требований (3, 4) обеспечивается процедурой «кодирования факторов» [12,15]:

$$x_i = \left(X_i - X_{0i}\right) / \Delta X_i , \qquad (6)$$

где X_i – некоторый энергетический фактор (ЭФ), X_{0i} – номинальное значение (в нашем случае) энергетического фактора, ΔX_i – интервал возможных значений энергетического

фактора. Тогда, для любого ЭФ его максимальное значение равно +1; и равно -1 минимальное значение ЭФ. Для построения модели вида (1), при количестве ЭФ равном n, потребуется 2^n экспериментов. Планы экспериментов, отвечающие условиям (2) – (6), принято называть планами первого порядка [12].

Вызывает определенный интерес, в плане повышения точности моделирования, построение математических моделей второго порядка. В качестве инструмента здесь можно использовать подходы, базирующиеся на «ортогональных центрально-композиционных планах второго порядка» [12,15]. Композиция такого плана представляет собой собственно план ПФЭ (или ДФЭ), дополненный двумя точками α для каждого ЭФ и центральной точки x_i . Эти точки в литературе принято называть «звездными» [12]. Соответственно для каждого ЭФ мы получаем пять уровней для использования: $x_i(-\alpha, -1, 0, 1, \alpha)$. Количество необходимых опытов здесь возрастает до $N = 2^n + 2n + 1$.

Введем в рассмотрение постоянную величину:

$$q = \sqrt{2^n/N} \,. \tag{7}$$

Преобразуем квадраты энергетических факторов по правилу:

$$x'_{ij} = x_{ij}^2 - q$$
, (8)

и определим «звездные» точки [12]:

$$\alpha = \sqrt{\frac{\sqrt{N \cdot 2^n} - 2^n}{2}} \,. \tag{9}$$

Эти преобразования позволяют перейти к определению искомых коэффициентов в уравнении (1) в соответствии с выражением (5).

Применение данного подхода требует внимательного определения области допустимого применения получаемых математических моделей.

Рассмотрим предложенный выше подход на примере моделирования погружного электродвигателя марки ЭД(Т) 45-117-1000. Для тестирования используем данные о значениях номинальных параметров из работы [17]:

U_{μ}, B	Р _{2н} , кВт	I ₁₁₀ , A	cosφ _H , o.e.	Р _{1н} , кВт	η,, %
1000	45	36,3	0,88	55	82

Таблица 1 – Номинальные параметры ЭД(Т) 45-117-1000

Примем значения параметров Т-образной схемы замещения ЭД(Т) 45-117-1000, в соответствии с работой [17], следующими: $R_1 = 0,660$; $X_1 = 1,39$; $R'_2 = 0,968$; $X'_2 = 1,39$; $R_2 = 6,37$; $X_2 = 39,6$.

Отметим, что вопросы идентификации параметров схемы замещения ПЭД детально рассматривались в работах [13,17,18] и не являются предметом данной статьи.

Введем допущения: «параметры схем замещения элементарных электрических машин составляющих ПЭД – равны» [19]; рассматриваем режим «расклинивания» при скольжении s = 1 [2]; температурными вариациями [17,20] пренебрегаем; насыщением магнитной системы пренебрегаем. При этом варьируются следующие параметры Т-образной схемы замещения ПЭД: R'_2 , X'_2 , R_μ , X_μ , U_1 . Выбор для анализа возможных вариаций параметров R'_2 , X'_2 , R_μ , X_μ – обусловлен существующими особенностями технологии изготовления ПЭД и влиянием режима эксплуатации ПЭД.

Включение частоты напряжения в спектр варьируемых параметров, в данном случае не производится, так как это принципиально не изменяет характер выполнения дальнейших выкладок и существенно снижает объем предоставляемой информации.

Находим зависимости в форме (1) для электромагнитного момента *М* :

$$M = M(R'_{2}, X'_{2}, R_{\mu}, X_{\mu}, U_{1})$$

и для потребляемого тока I_{I} :

$$I_{I} = I_{I}(R'_{2}, X'_{2}, R_{\mu}, X_{\mu}, U_{I})$$

Применим ортогональный центрально-композиционный план второго порядка для набора из пяти компонент: R'_2 , X'_2 , R_μ , X_μ , U_1 . При этом все выбранные компоненты считаем изменяющимися. Диапазон изменений для R'_2 , X'_2 , R_μ , X_μ , – примем $\pm 25\%$ от номинальных значений; изменение фазного напряжения U_1 примем $\pm 10\%$, что в совокупности образует факторное пространство (табл. 2).

Фактор,	Параметр,	Нижний уровень,	Верхний уровень,	Основной	Интервал
x_i	X _i	$X_{\min i}$	$X_{\max i}$	уровень, Х _{0і}	варьирования, ∆X _i
x_1	R`₂ , Ом	0,726	1,21	0,968	0,242
x_2	Х`2, Ом	1,04	1,74	1,39	0,348
x_3	R _μ , Ом	4,78	7,96	6,37	1,59
x_4	Χ _μ , Ом	29,7	49,5	39,6	9,90
x_5	U_1, B	520	635	577	57,7

Таблица 2 – Параметры факторного пространства *n* = 5

Процедура кодирования в соответствии с (6) и расчет «звездной» точки по (9) приводят к результатам:

$$\begin{aligned} x_1 &= \left(R_2^{'} - 0.968\right) / 0.242 ; \quad x_2 &= \left(X_2^{'} - 1.390\right) / 0.348 ; \quad x_3 &= \left(R_{\mu} - 6.370\right) / 1.593 ; \\ x_4 &= \left(X_{\mu} - 39.606\right) / 9.902 ; \\ x_5 &= \left(U_1 - 577.350\right) / 57.735 ; \quad \alpha &= \sqrt{\left(\sqrt{43 \cdot 2^5} - 2^5\right) / 2} = 1.596 . \end{aligned}$$

Фрагменты итогового плана вычислительного эксперимента представлены в табл.3. Выборка содержит максимальные и минимальные значения тока статора и электромагнитного момента.

Габлица 3 – План вычислительного эксперимента <i>n</i> :	=5	(фрагмент)
--	----	------------

N	x_1	x_2	x_3	x_4	x_5	••••	x_{1}^{2}	x_2^{2}	x_{3}^{2}	x_{4}^{2}	x_{5}^{2}	М, Н*м	<i>I</i> ₁ , <i>A</i>
1	-1	-1	-1	-1	-1		0,1	0,1	0,1	0,1	0,1	229	189
2	1	-1	-1	-1	-1		0,1	0,1	0,1	0,1	0,1	316	172
3	-1	1	-1	-1	-1		0,1	0,1	0,1	0,1	0,1	152	157
12	1	1	-1	1	-1		0,1	0,1	0,1	0,1	0,1	227	145
13	-1	-1	1	1	-1		0,1	0,1	0,1	0,1	0,1	233	187
14	1	-1	1	1	-1		0,1	0,1	0,1	0,1	0,1	322	171
21	-1	-1	1	-1	1		0,1	0,1	0,1	0,1	0,1	342	231
22	1	-1	1	-1	1		0,1	0,1	0,1	0,1	0,1	472	211
23	-1	1	1	-1	1		0,1	0,1	0,1	0,1	0,1	226	192
24	1	1	1	-1	1		0,1	0,1	0,1	0,1	0,1	332	180
25	-1	-1	-1	1	1		0,1	0,1	0,1	0,1	0,1	348	229
26	1	-1	-1	1	1		0,1	0,1	0,1	0,1	0,1	482	209
32	1	1	1	1	1		0,1	0,1	0,1	0,1	0,1	340	178
33	-1.6	0	0	0	0		1.7	-0.9	-0.9	-0.9	1.7	193	193

В. З. Ковалев, Е. С. Балыклов, Э. И. Хусаинов

34	1,6	0	0	0	0		1,7	-0,9	-0,9	-0,9	1,7	352	171
35	0	-1,6	0	0	0		-0,9	1,7	-0,9	-0,9	-0,9	393	211
36	0	1,6	0	0	0		-0,9	1,7	-0,9	-0,9	-0,9	214	160
37	0	0	-1,6	0	0		-0,9	-0,9	1,7	-0,9	-0,9	286	182
38	0	0	1,6	0	0		-0,9	-0,9	1,7	-0,9	-0,9	286	183
39	0	0	0	-1,6	0		-0,9	-0,9	-0,9	1,7	-0,9	279	185
40	0	0	0	1,6	0		-0,9	-0,9	-0,9	1,7	-0,9	289	182
41	0	0	0	0	-1,6		-0,9	-0,9	-0,9	-0,9	-0,9	202	153
42	0	0	0	0	1,6		-0,9	-0,9	-0,9	-0,9	-0,9	385	212
43	0	0	0	0	0		-0,9	-0,9	-0,9	-0,9	-0,9	286	183
Среднее значение уср.								289	184				

Аппроксимирующий полином (1) в данном случае примет вид:

$$y = b_{0} + b_{1} \cdot x_{1} + b_{2} \cdot x_{2} + b_{3} \cdot x_{3} + b_{4} \cdot x_{4} + b_{5} \cdot x_{5} + b_{12} \cdot x_{1} \cdot x_{2} + b_{13} \cdot x_{1} \cdot x_{3} + b_{14} \cdot x_{1} \cdot x_{4} + b_{15} \cdot x_{1} \cdot x_{5} + b_{23} \cdot x_{2} \cdot x_{3} + b_{24} \cdot x_{2} \cdot x_{4} + b_{25} \cdot x_{2} \cdot x_{5} + b_{34} \cdot x_{3} \cdot x_{4} + b_{35} \cdot x_{3} \cdot x_{5} + b_{45} \cdot x_{4} \cdot x_{5} + b_{123} \cdot x_{1} \cdot x_{2} \cdot x_{3} + b_{124} \cdot x_{1} \cdot x_{2} \cdot x_{4} + b_{125} \cdot x_{1} \cdot x_{2} \cdot x_{5} + b_{134} \cdot x_{1} \cdot x_{3} \cdot x_{4} + b_{135} \cdot x_{1} \cdot x_{3} \cdot x_{5} + b_{145} \cdot x_{1} \cdot x_{4} \cdot x_{5} + b_{234} \cdot x_{2} \cdot x_{3} \cdot x_{4} + b_{235} \cdot x_{2} \cdot x_{3} \cdot x_{5} + b_{245} \cdot x_{2} \cdot x_{4} \cdot x_{5} + b_{1345} \cdot x_{1} \cdot x_{5} + b_{1234} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} + b_{1235} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{5} + b_{1245} \cdot x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5} + b_{1234} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} + b_{1235} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{5} + b_{1245} \cdot x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5} + b_{1345} \cdot x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{5} + b_{1234} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} + b_{1235} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{5} + b_{1245} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5} + b_{1345} \cdot x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{5} + b_{1234} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} + b_{2345} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5} + b_{1245} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5} + b_{11} \cdot x_{1}^{2} + b_{22} \cdot x_{2}^{2} + b_{23} \cdot x_{2}^{2} + b_{23} \cdot x_{3}^{2} + b_{44} \cdot x_{4}^{2} + b_{55} \cdot x_{5}^{2}$$

По выражению (5) вычисляем коэффициенты полинома для электромагнитного момента и потребляемого тока. Коэффициенты приведены в таблице (4).

Для упрощения выражения (10) исключим из рассмотрения компоненты, не влияющие существенно на результат, для чего рассчитаем дисперсии вида [15]:

$$S_{bi}^{2} = S_{y}^{2} / \sum_{j=1}^{N} x_{ij}^{2} , \qquad (11)$$

Так как эксперимент вычислительный, то в выражении (11) дисперсию воспроизводимости S_{v}^{2} можно вычислить по формуле [15]:

$$S_{y}^{2} = \frac{y^{2} \cdot A^{2}}{4 \cdot 10^{4}},$$
 (12)

где y – экспериментальная величина, (в нашей работе принято равным выборочному среднему – $y_{cp.}$), A – точность, приемлемая для исследуемого объекта, или с которой можно определить величину y, %. При этом число степеней свободы – $f_y = \infty$.

Примем: доверительная вероятность p = 95%, число степеней свободы $f_y = \infty$, тогда табличное значение критерия Стьюдента t = 1,96 [12]. Соответственно можно определить доверительные интервалы $\Delta b_i = t \cdot S_{bi}$. Коэффициенты, для которых не выполнено соотношение $|b_i| > \Delta b_i$, считаем не значимыми [15], и при построении модели ПЭД не используем. Итоговые результаты приведены в таблице 4.

	Μ		I ₁			
Коэф.	знач.	Δb	знач.	$\Delta \mathbf{b}$		
b0	288,910	0,43	183,730	0,27		
b1	49,896	0,46	-7,054	0,30		
b2	-53,932	0,46	-15,912	0,30		
b3	$-8,703*10^{-2}$	0,46	5,049*10 ⁻²	0,30		
b4	2,942	0,46	$-9,429*10^{-1}$	0,30		
b5	57,280	0,46	18,373	0,30		
b12	-5,266	0,50	1,950	0,32		
b13	-4,459*10 ⁻²	0,50	3,212*10 ⁻²	0,32		
b14	6,133*10 ⁻¹	0,50	-2,903*10 ⁻²	0,32		
b15	9,882	0,50	$-7,105*10^{-1}$	0,32		
b23	4,251*10 ⁻²	0,50	$-2,297*10^{-2}$	0,32		
b24	$-3,028*10^{-1}$	0,50	$-1,963*10^{-1}$	0,32		
b25	-10,616	0,50	-1,590	0,32		
b34	$3,775*10^{-3}$	0,50	$-1,123*10^{-2}$	0,32		
b35	$-1,721*10^{-2}$	0,50	5,038*10 ⁻³	0,32		
b45	$5,742*10^{-1}$	0,50	-9,250*10 ⁻²	0,32		
b123	$1,527*10^{-2}$	0,50	$-1,280*10^{-3}$	0,32		
b124	$-6,860*10^{-2}$	0,50	-3,547*10 ⁻³	0,32		
b125	-1,043	0,50	1,950*10-1	0,32		
b134	$1,234*10^{-2}$	0,50	-1,388*10 ⁻²	0,32		
b135	-8,829*10 ⁻³	0,50	3,212*10 ⁻³	0,32		
b145	$1,215*10^{-1}$	0,50	-2,903*10 ⁻³	0,32		
b234	-1,532*10 ⁻²	0,50	1,270*10 ⁻²	0,32		
b235	8,418*10 ⁻³	0,50	$-2,297*10^{-3}$	0,32		
b245	$-5,996*10^{-2}$	0,50	-1,963*10 ⁻²	0,32		
b345	7,475*10 ⁻⁴	0,50	$-1,123*10^{-3}$	0,32		
b1234	-5,956*10 ⁻³	0,50	$6,650*10^{-4}$	0,32		
b1235	3,024*10 ⁻³	0,50	$-1,280*10^{-4}$	0,32		
b1245	$-1,358*10^{-2}$	0,50	$-3,547*10^{-4}$	0,32		
b1345	2,443*10 ⁻³	0,50	-1,388*10 ⁻³	0,32		
b2345	-3,033*10 ⁻³	0,50	$1,270*10^{-3}$	0,32		
b12345	-1,179*10 ⁻³	0,50	6,650*10 ⁻⁵	0,32		
b11	-5,524	0,79	$-1,392*10^{-1}$	0,50		
b22	6,855	0,79	1,223	0,50		
b33	$-8,781*10^{-2}$	0,79	-6,723*10 ⁻³	0,50		
b44	-8,818*10-1	0,79	2,638*10-1	0,50		
b55	2,755	0,79	-9,656*10 ⁻⁴	0,50		

Таблица 4 – Доверительные интервалы компонент модели ПЭД

После исключения малозначимых коэффициентов и операции раскодирования, уравнения регрессии электромагнитного момента и тока статора примут вид:

$$\hat{M} = 86,421 - 114,994 \cdot x_{1} - 66,901 \cdot x_{2} + 1,819 \cdot 10^{-1} \cdot x_{4} - 2,399 \cdot 10^{-1} \cdot x_{5} + 61,358 \cdot x_{1} \cdot x_{2} + 2,560 \cdot 10^{-1} \cdot x_{1} \cdot x_{4} + 1,006 \cdot x_{1} \cdot x_{5} - 3,212 \cdot 10^{-1} \cdot x_{2} \cdot x_{5} + 3,005 \cdot 10^{-3} \cdot x_{4} \cdot x_{5} - 2,147 \cdot 10^{-1} \cdot x_{1} \cdot x_{2} \cdot x_{5} - 94,320 \cdot x_{1}^{2} + 56,734 \cdot x_{2}^{2} - 8,994 \cdot 10^{-3} \cdot x_{4}^{2} + 8,264 \cdot 10^{-4} \cdot x_{5}^{2};$$
(13)

$$\hat{I}_{1} = 53,334 - 32,021 \cdot x_{1} - 50,626 \cdot x_{2} - 9,523 \cdot 10^{-2} \cdot x_{4} + 4,776 \cdot 10^{-1} \cdot x_{5} + (14) + 23,182 \cdot x_{1} \cdot x_{2} - 5,085 \cdot 10^{-2} \cdot x_{1} \cdot x_{5} - 7,923 \cdot 10^{-2} \cdot x_{2} \cdot x_{5} + 10,122 \cdot x_{2}^{2};$$

Проведем проверку на адекватность полученных моделей. Вычисляем остаточную дисперсию:

$$S_{r}^{2} = \frac{\sum_{j=l}^{N} (y_{j} - \hat{y}_{j})^{2}}{f_{r}},$$
(15)

где $f_r = N - l$, l – количество коэффициентов в уравнении.

Определим «значение критерия Фишера» [12]:

$$F = S_r^{2} / S_y^{2} . (16)$$

В соответствии с [33] «если $F < F_{maon}$, то уравнение адекватно». Результаты расчетов при p = 95%, занесены в таблицу (5)

	M	I_1
f_r	22	28
S_r^2	1,32	0,17
F	0,63	0,21
F _{табл}	1,52	1,46

Таблина	5 –	Крите	рий (Фишера	а молели	ПЭЛ
1	•		~	p -		

Анализ критерия Фишера табл.5 позволяет утверждать, что уравнения (13) и (14) удовлетворяют нашим требованиям адекватности и являются математическими моделями электромагнитного момента и тока статора ПЭД в режиме расклинивания.

Для электромагнитного момента, когда ПЭД находится в режиме расклинивания, средняя абсолютная ошибка (МАРЕ) составила – 0,18%, максимальная – 1,48%. Для потребляемого тока статора, когда ПЭД находится в режиме расклинивания, МАРЕ – 0,15%, максимальная ошибка – 0,5%. Полученные оценки вполне удовлетворительны для построения системы управления рассматриваемым режимом.

Заключение и выводы

1. Предложена методика исследования работы асинхронных погружных электродвигателей при неноминальных режимах работы, включая вариации величины питающего напряжения.

2. Построены математические модели ПЭД в режиме расклинивания, в виде зависимостей момента и тока статора от параметров Т-образной схемы замещения. Показана удовлетворительная точность этих моделей в области применимости: средняя абсолютная ошибка (MAPE) составила – 0,18%, максимальная – 1,48%. Для потребляемого тока статора, когда ПЭД находится в режиме расклинивания, МАРЕ – 0,15%, максимальная ошибка – 0,5%.

3. Предложенные модели ПЭД можно использовать в структуре систем управления УЭЦН.

Литература

1. Экспертный Совет по механизированной добыче нефти // Механизированная добыча – 2021: Международная практическая конференция, 2021. – № 5. – С. 94–97. – URL: http://pump-sovet.com/upload/itogi_mdn-2021_neftegaz.ru_№5_2021.pdf (дата обращения: 05.03.2022). – Текст : электронный. 2. Ведерников, В. А. Исследование и анализ процесса «расклинивания» погружных насосов установок добычи нефти / В. А. Ведерников, О. А. Лысова, Р. Р. Лопатин. – EDN: MXGHIX. – Текст : непосредственный // Вестник кибернетики. – 2010. – № 9. – С. 28–36.

3. Sensorless Control of CSC-Fed PMSM Drives with Low Switching Frequency for Electrical Submersible Pump Application / L. Ding, Y. W. Li, N. R. Zargari, R. Paes. – DOI: 10.1109/TIA.2020.2990895 // IEEE Transactions on Industry Applications. – 2020. – Vol. 56, № 4. – P. 3799–3808.

4. Шандарова, Е. Б. Имитационное моделирование асинхронного электропривода насоса погружного технологического оборудования / Е. Б. Шандарова, В. Г. Букреев, Е. А. Быстров. – DOI: 10.18503/2311-8318-2021-4(53)-13-18 // Электротехнические системы и комплексы. – 2021. – № 4 (53). – С. 13–18.

5. Ковалев, В. З. Моделирование динамических режимов работы асинхронной машины с учетом тепловых переходных процессов / В. З. Ковалев, О. В. Архипова. – EDN: VEDWLX. – Текст : непосредственный // Нефтегазовое дело. – 2015. – Т. 13, № 1. – С. 115–118.

6. Identification of mathematical models parameters of electromechanical consumers of regionally isolated electrotechnical complexes / V. Z. Kovalev, O. V. Arhipova, S. S. Esin [et al.]. – DOI: 10.1088/1742-6596/1260/5/052014 // Journal of Physics: Conference Series. – 2019. – Vol. 1260. – P. 052014.

7. Каширских, В. Г. Обоснование упрощения математической модели асинхронного электродвигателя для динамической идентификации / В. Г. Каширских. – Текст : непосредственный. – DOI: 10.26730/1816-4528-2019-5-33-37 // Горное оборудование и электромеханика. – 2019. – № 5 (145). – С. 33–37.

8. Chen, J. Resistances and Speed Estimation in Sensorless Induction Motor Drives Using a Model with Known Regressors / J. Chen, J. Huang, Y. Sun. – DOI: 10.1109/TIE.2018.2849964 // IEEE Transactions on Industrial Electronics. – 2019. Vol. 66, № 4. P. – 2659–2667.

9. Enhancement of induction motor dynamics using a novel sensorless predictive control algorithm / H. Echeikh, N. V. Quynh, H. H. Alhelou [et al.]. – DOI: 10.3390/en14144377 // Energies. – $2021. - Vol. 14. - N_{0} 14.$

10. Model predictive control of induction motor based on amplitude-phase motion equation / Z. Lu, R. Zhang, L. Hu [et al.]. – DOI: 10.1049/iet-pel.2019.0093 // IET Power Electronics. – 2019. – Vol. 12, N_{2} 9. – P. 2400–2406.

11. Aziz, A. G. M. A. Robust sensorless model-predictive torque flux control for highperformance induction motor drives / A. G. M. A. Aziz, A. A. Zaki Diab, H. Rez. – DOI: 10.3390/math9040403 // Mathematics. – 2021. – Vol. 9, № 4. – P. 1–29

12. Ivobotenko, B. A. Planirovanie eksperimenta v elektromekhanike [Designing of experiments in electromechanics] / B. A. Ivobotenko, N.F. Ilinskij, I. P. Kopylov. – Moscow : Energy, 1975. – 184 p. [in Russian].

13. Durakovic, B. Design of Experiments Application, Concepts, Examples: State of the Art / B. Durakovic. – DOI: 10.21533/pen.v5i3.145 // Periodicals of Engineering and Natural Scinces. – 2017. – Vol. 5, № 3. – P. 421–439.

14. Jankovic, A. Designing the design of experiments (DOE) – An investigation on the influence of different factorial designs on the characterization of complex systems / A. Jankovic, G. Chaudhary, F. Goia. – DOI: 10.1016/j.enbuild.2021.111298// Energy and Buildings. – 2021. – Vol. 250. – P. 111298.

15. Montgomery, D. C. Design and Analysis of Experiments / D. C. Montgomery. – Ninth Edition. – Hoboken ; NJ : John Wiley and Sons, 2017. – 734 p.

16. Schrangl, P. On optimal design of experiments for static polynomial approximation of nonlinear systems / P. Schrangl, L. Giarre. – DOI: 10.1016/j.sysconle.2020.104758 // Systems and Control Letters. – 2020. – Vol. 143. – P. 104758.

17. Исследование функционирования электротехнических комплексов установок электроцентробежных насосов при вариациях внешних температурных воздействий / Р. Н.

Хамитов, В. В. Аникин, В. З. Ковалев, А. О. Парамзин. – DOI: 10.25206/1813-8225-2020-172-19-25. – Текст : непосредственный // Омский научный вестник. – 2020. – № 4 (172). – С. 19–25.

18. Боловин, Е. В. Метод идентификации параметров погружных асинхронных электродвигателей установок электроприводных центробежных насосов для добычи нефти / Е. В. Боловин, А. С. Глазырин. – EDN: YGSRYP. – Текст : непосредственный // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2017. – Т. 328, № 1. – С. 123–131.

19. Математическая модель погружного асинхронного двигателя как электротехнического комплекса / О. В. Архипова, Р. А. Чертов, А.В. Денисенко [и др.]. – Текст : непосредственный // Инженерный вестник Дона. – 2020. – № 12 (72). – С. 146–158.

20. Татевосян, А. А. Исследование статических и динамических характеристик синхронного двигателя на постоянных магнитах для привода поршневого компрессора / А. А. Татевосян. – Текст : непосредственный // Сборник трудов XI Международной (XXII Всероссийской) конференции по автоматизированному электроприводу АЭП 2020, Санкт-Петербург, 4-7 октября 2020 года. – Санкт-Петербург : ФГАОУВО «Национальный исследовательский университет ИТМО», 2021. – С. 18–22.