Formation and investigation of properties of composite gel-polymer electrolytes based on Nafion@ZrO2 membrane in Li+ form

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The use of cation-exchange membranes as polymer electrolytes in lithium metal batteries can inhibit dendrite formation during battery operation. Solvation of the membranes leads to an increase in ionic conductivity, but the mechanical properties, which also affect dendrite growth, are significantly degraded. In the present work, the mechanical strength and volumetric stability of Nafion®-117 membranes in Li+⁺ form solvated by a mixture of ethylene carbonate and propylene carbonate were improved by introducing nanosized zirconium dioxide particles into the membrane matrix by in situ method. It is shown that the introduction of 3.8 wt.% ZrO₂ leads to a ~28-fold increase in Young’s modulus compared to the unmodified membrane. At the same time, the volumetric stability of the membranes during solvation increases by ~3.4 times. However, the ionic conductivity of the membranes decreases after the introduction of dopant and is 3∙10⁴, 5∙10⁶ and 2.7∙10⁶ S/cm at 25°C for the membrane without dopant and containing 3.8 wt.% and 6.7 wt.% zirconium dioxide, respectively.

全文:

受限制的访问

作者简介

D. Voropaeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: voroparva@igic.ras.ru
俄罗斯联邦, Moscow

Ya. Pyataeva

Higher School of Economics

Email: voroparva@igic.ras.ru
俄罗斯联邦, Moscow

A. Yaroslavtsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: voroparva@igic.ras.ru
俄罗斯联邦, Moscow

参考

  1. Fan L., Wei S., Li S., Li Q., Lu Y. // Adv. Energy Mater. 2018. V. 8. Art. No 1702657.
  2. Li H., Xu Z., Yang J., Wang J., Hirano S. // Energy Fuels. 2020. V. 4. P. 5469–5487.
  3. Rao X., Lou Y., Zhong S., Wang L., Li B., Xiao Y., Peng W., Zhong X., Huang J. // J. Electroanal. Chem. 2021. V. 897. Art. No 115499.
  4. Ding P., Lin Z., Guo X., Wu L., Wang Y., Guo H., Li L., Yu H. // Mater. Today. 2021. V. 51. P. 449–474.
  5. Chazalviel J.-N. // Phys. Rev. A. 1990. V. 42. P. 7355–7367.
  6. Tu Z., Choudhury S., Zachman M.J., Wei S., Zhang K., Kourkoutis L.F., Archer L.A. // Joule. 2017. V. 1. P. 394–406.
  7. Xu R., Xiao Y., Zhang R., Cheng X., Zhao C., Zhang X., Yan C., Zhang Q., Huang J. // Adv. Mater. 2019. V. 31. Art. No 1808392.
  8. Chen Y., Li C., Ye D., Zhang Y., Bao H., Cheng H. // J. Memb. Sci. 2021. V. 620. Art. No 118926.
  9. Istomina A.S., Yaroslavtseva T.V., Reznitskikh O.G., Kayumov R.R., Shmygleva L.V., Sanginov E.A., Dobrovolsky Y.A., Bushkova O.V. // Polymers (Basel). 2021. V.13 Art. No 1150.
  10. Evshchik E.Y., Sanginov E.A., Kayumov R.R., Zhuravlev V.D., Bushkova O.V., Dobrovolsky Y.A. // Int. J. Electrochem. Sci. 2020. V. 15. P. 2216–2225.
  11. Nicotera I., Simari C., Agostini M., Enotiadis A., Brutti S. // J. Phys. Chem. C. 2019. V. 123. P. 27406–27416.
  12. Voropaeva D.Y., Novikova S.A., Kulova T.L., Yaroslavtsev A.B. // Solid State Ionics. 2018. V. 324. P. 28–32.
  13. Voropaeva D., Novikova S., Xu T., Yaroslavtsev A. // J. Phys. Chem. B. 2019. V. 123. P. 10217–10223.
  14. Xiao W., Wang Z., Zhang Y., Fang R., Yuan Z., Miao C., Yan X., Jiang Y. // J. Power Sources. 2018. V. 382. P. 128–134.
  15. Li X., Zhang H., Mai Z., Zhang H., Vankelecom I. // Energy Environ. Sci. 2011. V. 4. Art. No 1147.
  16. Pan X., Yang P., Guo Y., Zhao K., Xi B., Lin F., Xiong S. // Adv. Mater. Interfaces. 2021. V. 8. Art. No 2100669.
  17. Han B., Jiang P., Li S., Lu X. // Solid State Ionics. 2021. V. 361. Art. No 115572.
  18. Zhang P., Yang L.C., Li L.L., Ding M.L., Wu Y.P., Holze R. // J. Memb. Sci. 2011. V. 379. P. 80–85.
  19. Jamalpour S., Ghahramani M., Ghaffarian S.R., Javanbakht M. // Polymer. 2021. V. 228. Art. No 123924.
  20. Lee Y.-S., Jeong Y.B., Kim D.-W. // J. Power Sources. 2010. V. 195. P. 6197–6201.
  21. Jagadeesan A., Sasikumar M., Hari Krishna R., Raja N., Gopalakrishna D.,. Vijayashree S, Sivakumar P. // Mater. Res. Express. 2019. V. 6. Art. No 105524.
  22. Pan X., Hou Q., Liu L., Zhang J., An M., Yang P. // Ionics. 2021. V. 27. P. 2045–2051.
  23. Subramania A., Kalyana Sundaram N.T., Sathiya Priya A.R., Vijaya Kumar G. // J. Memb. Sci. 2007. V. 294. P. 8–15.
  24. Croce F., Settimi L., Scrosati B. // Electrochem. Commun. 2006. V. 8. P. 364–368.
  25. Xu J., Ma C., Chang C., Lei X., Fu Y., Wang J., Liu X., Ding Y. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 38179–38187.
  26. Guo Q., Han Y., Wang H., Xiong S., Sun W., Zheng C., Xie K. // Novel synergistic coupling composite chelating copolymer/LAGP solid electrolyte with Electrochim. Acta. 2019. V. 296. P. 693–700.
  27. Rangasamy E., Wolfenstine J., Sakamoto J. // Solid State Ionics. 2012. V. 206. P. 28–32.
  28. Han F., Westover A.S., Yue J., Fan X., Wang F., Chi M., Leonard D.N., Dudney N.J., Wang H., Wang C. // Nat. Energy. 2019. V. 4. P. 187–196.
  29. Shin B.R., Nam Y.J., Oh D.Y., Kim D.H., Kim J.W. // Electrochim. Acta. 2014. V. 146. P. 395–402.
  30. Yi L., Zou C., Chen X., Liu J., Cao S., Tao X., Zang Z., Liu L., Chang B., Shen Y., Wang X. // ACS Appl. Energy Mater. 2022. V. 5. P. 7317–7327.
  31. Safronova E.Y., Lysova A.A., Voropaeva D.Y., Yaroslavtsev A.B. // Membranes. 2023. V. 13. Art. No 721.
  32. Gao J., Shao Q., Chen J. // J. Energy Chem. 2020. V. 46. P. 237–247.
  33. Voropaeva D., Merkel A., Yaroslavtsev A. // Solid State Ionics. 2022. V. 386. Art. No 116055.
  34. Golubenko D.V, Shaydullin R.R., Yaroslavtsev A.B. // Colloid Polym. Sci. 2019. V. 297. P. 741–748.
  35. Doyle M., Lewittes M.E., Roelofs M.G., Perusich S.A., Lowrey R.E. // J. Memb. Sci. 2001. V. 184. P. 257–273.
  36. Yaroslavtsev A.B., Stenina I.A., Golubenko D.V. // Pure Appl. Chem. 2020. V. 92. P. 1147–1157.
  37. Chen H.-Y.T., Tosoni S., Pacchioni G. // Surf. Sci. 2016. V. 652. P. 163–171.
  38. Ярославцев А.Б., Караванова Ю.А., Сафронова Е.Ю. // Мембраны и Мембранные Технологии. 2011. Т. 1. С. 3–10 (англоязычная версия: Yaroslavtsev A.B., Karavanova Y.A., Safronova E.Y. // Petroleum Chem. 2011. V. 51, P. 473–479).
  39. Porozhnyy M., Huguet P., Cretin M., Safronova E., Nikonenko V. // Int. J. Hydrogen Energy. 2016. V. 41. P. 15605–15614.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray radiographs of powders obtained after annealing of hybrid membranes Nafion-3.8 (1), Nafion-6.7 (2), dashed diagram corresponding to ZrO2 (Card No.: 44-1472)

下载 (315KB)
3. Fig. 2. IR spectra of Nafion-0 (1), Nafion-3.8 (2), Nafion-6.7 (3)

下载 (367KB)
4. Fig. 3. Temperature dependences of ionic conductivity of Nafion-0 (1), Nafion-3.8 (2), Nafion-6.7 (3) membranes

下载 (215KB)
5. Fig. 4. Stress-strain curves. Nafion-0 (1), Nafion-3.8 (2), Nafion-6.7 (3)

下载 (208KB)

版权所有 © Russian Academy of Sciences, 2024