Исследование стабильности гидрофобных свойств текстурированных полимерных покрытий, осажденных на поверхности трековых мембран

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована стабильность гидрофобных свойств покрытий с морфологически развитой (текстурированной) поверхностью из политетрафторэтилена и сверхвысокомолекулярного полиэтилена при хранении, а также при длительном контакте с водой и водными растворами хлорида натрия с концентрацией от 5 до 15 г/л. Осаждение покрытий производили на поверхности полиэтилентерефталатной трековой мембраны путем электронно-лучевого диспергирования исходных полимеров в вакууме. Показано, что покрытия из политетрафторэтилена под воздействием реальных условий окружающей среды имеют тенденцию стареть и постепенно терять свои гидрофобные свойства. Угол смачивания водой покрытий при хранении образцов композиционных мембран в течение 5 лет уменьшается в среднем на 30°, что составляет 23% от первоначального значения. Уменьшение угла смачивания покрытий данного типа обусловлено переходом от гетерогенного режима смачивания к гомогенному, причиной чего является образование на их поверхности адсорбционного слоя воды. В противоположность этому угол смачивания покрытий из сверхвысокомолекулярного полиэтилена при хранении образцов мембран практически не изменяется. Исследование устойчивости полимерных покрытий при длительном контакте композиционных мембран с водой и водными растворами хлорида натрия показало, что если покрытия из сверхвысокомолекулярного полиэтилена устойчивы как в воде, так и водных растворах хлорида натрия, то покрытия из политетрафторэтилена более стабильны к действию водных растворов соли, чем воды.

Полный текст

Доступ закрыт

Об авторах

Л. И. Кравец

Лаборатория ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований

Автор, ответственный за переписку.
Email: kravets@jinr.ru
Россия, Дубна, ул. Жолио-Кюри, 20, 141980

М. А. Ярмоленко

Гомельский государственный университет им. Ф. Скорины

Email: kravets@jinr.ru
Белоруссия, Гомель, ул. Советская, 104, 246019

А. В. Рогачев

Гомельский государственный университет им. Ф. Скорины

Email: kravets@jinr.ru
Белоруссия, Гомель, ул. Советская, 104, 246019

Р. В. Гайнутдинов

Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук

Email: kravets@jinr.ru
Россия, Москва, Ленинский просп., 59, 119333

М. А. Кувайцева

Лаборатория ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований

Email: kravets@jinr.ru
Россия, Дубна, ул. Жолио-Кюри, 20, 141980

В. А. Алтынов

Лаборатория ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований

Email: kravets@jinr.ru
Россия, Дубна, ул. Жолио-Кюри, 20, 141980

Н. Е. Лизунов

Лаборатория ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований

Email: kravets@jinr.ru
Россия, Дубна, ул. Жолио-Кюри, 20, 141980

Список литературы

  1. Modification of Polymer Properties. / Ed. by Jasso-Gastinel C.F., Kenny J.M. Oxford (UK): William Andrew. 2016. 232 p.
  2. Ярославцев А.Б., Шельдешов Н.В., Заболоцкий В.И. и др. Мембраны и мембранные технологии. М.: Научный мир. 2013. 612 с.
  3. Khulbe K.C., Feng C., Matsuura T. The art of surface modification of synthetic polymeric membranes. // J. Appl. Polym. Sci. 2010. V. 115. P. 855–895.
  4. Abegunde O.O., Akinlabi E.T., Oladijo O.Ph., Akinlabi S., Ude A.U. Overview of thin film deposition techniques. // AIMS Materials Science. 2019. V. 6. № 2. P. 174–199.
  5. Liu F., Wang L., Li D., Liu Q., Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. // RCS Adv. 2019. V. 9. P. 35417–35428.
  6. Farahbakhsh J., Vatanpour V., Khoshnam M., Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. // Reactive and Functional Polymers. 2021. V. 166. Article 105015.
  7. Eykens L., DeSitter K., Dotremont C., Pinoy L., Van der Bruggen B. Coating techniques for membrane distillation: An experimental assessment. // Sep. Purif. Technol. 2018. V. 193. P. 38–48.
  8. Zahid M., Rashid A., Akram S., Rehan Z.A., Razzaq W. A comprehensive review on polymeric nano-composite membranes for water treatment. // J. Membr. Sci. Technol. 2018. V. 8. № 1. Article 1000179.
  9. Yang Zh., Ma X.-H., Tang Ch.Y. Recent development of novel membranes for desalination. // Desalination. 2018. V. 434. P. 37–59.
  10. Anis Sh. F., Hashaikeh R., Hilal N. Functional materials in desalination: A review. // Desalination. 2019. V. 468. Article 114077.
  11. Teow Y.H., Mohammad A.W. New generation nanomaterials for water desalination: A review. // Desalination. 2019. V. 451. P. 2–17.
  12. Assad M. El Haj, Bani-Hanib E., Al-Sawafta I., Issa S., Hmida A., Gupta M., Atiqure R.S.M., Hidouri K. Applications of nanotechnology in membrane distillation: A review study. // Desalination and Water Treatment. 2020. V. 192. P. 61–77.
  13. Essalhi M., Khayet M. Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation. // J. Membr. Sci. 2012. V. 417–418. P. 163−173.
  14. Gancarz I., Bryjak M., Kujawski J., Wolska, J., Kujawa, J., Kujawski W. Plasma deposited fluorinated films on porous membranes. // Mater. Chem. Phys. 2015. V. 151. P. 233–242.
  15. Korolkov I.V., Gorin Y.G., Yeszhanov A.B., Kozlovskiy A.L., Zdorovets M.V. Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. // Mater. Chem. Phys. 2018. V. 205. P. 55–63.
  16. Kravets L.I., Yarmolenko M.A., Yablokov M.Yu., Gainutdinov R.V., Altynov V.A., Lizunov N.E. Fabrication of composite membranes for water desalination by electron-beam deposition of a polytetrafluoroethylene-like coating on the surface of track-etched membrane. // High Temp. Mater. Proc. 2020. V. 24. № 4. P. 239−260.
  17. Yeszhanov A.B., Korolkov I.V., Dosmagambetova S.S., Zdorovets M.V., Güven O. Recent progress in the membrane distillation and impact of track-etched membranes. // Polymers. 2021. V. 13. Article 2520.
  18. Bryjak M., Gancarz I. Membrane prepared via plasma modification. In: Membranes for membrane reactors: preparation, optimization and selection. Eds. A. Basile and F. Gallucci. Chichester (UK): John Wiley & Sons. 2011. P. 549–568.
  19. Kravets L.I., Gilman A.B., Dinescu G. Modification of polymer membrane properties by low-temperature plasma. // Rus. J. Gener. Chem. 2015. V. 85. № 5. P. 1284−1301.
  20. Wang J., Chen X., Reis R., Chen Zh., Milne N., Winther-Jensen B., Kong L., Dumee L.F. Plasma modification and synthesis of membrane materials – A mechanistic review. // Membranes. 2018. V. 8. № 3. Article 56.
  21. Кравец Л.И., Гильман А.Б., Satulu V., Mitu B., Dinescu G. Формирование ‘diode-like’ композитных мембран методом полимеризации в плазме. // Перспективные материалы. 2017. №. 9. С. 5−21.
  22. Ясуда Х. Полимеризация в плазме. М.: Мир, 1988. 376 с.
  23. Кравец Л.И., Алтынов В.А., Ярмоленко М.А., Гайнутдинов Р.В., Satulu V., Mitu B., Dinescu G. Осаждение на поверхности трековых мембран гидрофобных полимерных покрытий из активной газовой фазы. // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 151−162.
  24. Fan W., Qian J., Bai F., Li Y., Wang C., Zhao Q.-Z. A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses. // Chem. Phys. Lett. 2016. V. 644. P. 261−266.
  25. Yong J., Chen F., Yang Q., Jiang Z., Hou X. A review of femtosecond-laser-induced underwater superoleophobic surfaces. // Adv. Mater. Interfaces. 2018. V. 5. Article 1701370.
  26. Satulu V., Mitu B., Pandele A.M., Voicu S.I., Kravets L., Dinescu G. Composite polyethylene terephthalate track membranes with thin teflon-like layers: preparation and surface properties. // Appl. Surf. Sci. 2019. V. 476. P. 452–459.
  27. Kravets L., Altynov V., Lizunov N., Gainutdinov R., Satulu V., Mitu B., Dinescu G. Hydrophobization of track membrane surface by magnetron sputter deposition of ultra-high molecular weight polyethylene. // Plasma Phys. Technol. 2020. V. 7. № 1. P. 10–15.
  28. Ju Y., Ai L., Qi X., Li J., Song W. Review on hydrophobic thin films prepared using magnetron sputtering deposition. // Materials. 2023. V. 16. Article 3764.
  29. Michels A.F., Soave P.A., Nardi J., Jardim P.L.G., Teixeira S.R., Weibel D.E., Horowitz F. Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces. // J. Mater. Sci. 2016. V. 51. P. 1316–1323.
  30. Henda R., Wilson G., Gray-Munro J., Alshekhli O., McDonald A.M. Henda R., Wilson G., Gray-Munro J., Alshekhli O., McDonald A.M. Preparation of polytetrafluoroethylene by pulsed electron ablation: Deposition and wettability aspects. // Thin Solid Films. 2012. V. 520. P. 1885–1889.
  31. Ярмоленко М.А., Рогачев А.А., Лучников П.А., Рогачев А.В., Джанг Сянь Хун. // Микро- и нанокомпозиционные полимерные покрытия, осаждаемые из активной газовой фазы. / Под ред. А.В. Рогачева. М.: Радиотехника, 2016. 424 с.
  32. Drabik M., Polonskaya O., Kylian O., Cechvala J., Artemenko A., Gordeev I., Choukourov A., Slavinska D., Matolinova I., Biederman H. Syperhydrophobic coatings prepared by RF magnetron sputtering of PTFE. // Plasma Process Polym. 2010. V. 7. P. 544–551.
  33. Кравец Л.И., Ярмоленко М.А., Рогачев А.А., Гайнутдинов Р.В., Гильман А.Б., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран супергидрофобных покрытий методом электронно-лучевого диспергирования полимеров в вакууме. // Перспективные материалы. 2019. № 11. С. 59–74.
  34. Kravets L.I., Altynov V.A., Gilman A.B., Yablokov M Yu., Satulu V., Mitu B., Dinescu G. Deposition of fluorinated polymer films onto track-etched membrane surface. // Rom. Rep. Phys. 2018. V. 70. Article 516.
  35. Бойнович Л.Б., Емельяненко А.М. Гидрофобные материалы и покрытия: принципы создания, свойства и применение. // Успехи химии. 2008. Т. 77. № 7. С. 619−638.
  36. Ерофеев Д.А., Машляковский Л.Н. Получение и применение гидрофобных полиуретановых кремнийсодержащих покрытий. Часть 1: Основы явления гидрофобности. // Химия и технология высокомолекулярных соединений. 2022. № 62. С. 58–65.
  37. Butt H.-J., Ilia V. Roisman I.V., Brinkmann M., Papadopoulos P., Vollmer D., Semprebon C. Characterization of super liquid-repellent surfaces. // Curr. Opin. Colloid Interface Sci. 2014. V. 19. P. 343–354.
  38. Simpson J.T., Hunter S.R., Aytug T. Superhydrophobic materials and coatings: A review. // Rep. Prog. Phys. 2015. V. 78. Article 086501.
  39. Liravi M., Pakzad H., Moosavi A., Nouri-Borujerdi A. A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction. // Prog. Org. Coat. 2020. V. 140. Article 105537.
  40. Mehanna Y.A., Sadler E., Upton R.L., Kempchinsky A.G., Lu Y., Crick C.R. The challenges, achievements and applications of submersible superhydrophobic materials. // Chem. Soc. Rev. 2021. V. 50. P. 6569–6612.
  41. Пашинин А.С., Золотареыский В.И., Киселев М.Р., Емельяненко А.М., Бойнович Л.Б. Термостойкость супергидрофобных покрытий. // Доклады Акад. Наук. 2011. Т. 436. № 4. С. 490–493.
  42. Vidal K., Gomez E., Goitandia A.M., Angulo-Ibanez A., Aranzabe E. The synthesis of a superhydrophobic and thermal stable silica coating via sol-gel process. // Coatings. 2019. V. 9. Article 627.
  43. Myronyuk O., Baklan D. Aging analysis of textured water-repellent coatings under ultraviolet radiation and water. // Chem. Engineering. 2022. V. 4. № 3. P. 12–15.
  44. Домантовский А.Г., Емельяненко А.М., Емельяненко К.А., Бойнович Л.Б. Пороговый эффект деградации супергидрофобных покрытий, вызванный воздействием озона. // Журнал технической физики. 2021. Т. 91. № 8. С. 1293–1298.
  45. Пашинин А.С., Емельяненко А.М., Бойнович Л.Б. Взаимодействие гидрофобных и супергидрофобных материалов с водными средами. // Физикохимия поверхности и защита материалов. 2010. Т. 46. № 6. С. 664−670.
  46. Бойнович Л.Б., Емельяненко А.М., Пашинин А.С. Особенности взаимодействия силиконовых резин электротехнического назначения с водными средами. // Физикохимия поверхности и защита материалов. 2009. Т. 45. № 1. С. 92−98.
  47. Емельяненко А.М., Бойнович Л.Б. Анализ смачивания как эффективный метод изучения характеристик покрытий, поверхностей и происходящих на них процессов (обзор). // Заводская лаборатория. Диагностика материалов. 2010. Т. 76. № 9. С. 27−36.
  48. Apel P.Yu., Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. // Adv. Natur. Sci.: Nanosci. Nanotechnol. 2011. V. 2. Article 013002.
  49. Kravets L.I., Dmitriev S.N., Apel P.Yu. Production and properties of polypropylene track membranes. // Collect. Czech. Commun. 1997. V. 62. P. 752–760.
  50. Кравец Л.И., Ярмоленко М.А., Рогачев А.В., Гайнутдинов Р.В., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран гидрофобных и супергидрофобных покрытий с целью создания композиционных мембран для опреснения воды. // Коллоидный журнал. 2022. Т. 84. № 4. С. 433–452.
  51. Мулдер М. Введение в мембранную технологию. М.: Мир. 1999. 514 с.
  52. Овчинников В.В., Селезнев В.Д. Автоматический газодинамический контроль диаметра пор ядерных мембран с использованием микро-ЭВМ. // Измерит. техника. 1989. № 3. С. 12–13.
  53. Апель П.Ю., Дмитриев С.Н. Оптимизация формы пор трековых мембран. // Критические технологии. Мембраны. 2004. № 3. С. 32−37.
  54. Huhtamäki T., Tian X., Korhonen J.T., Ras R.H.A. Surface-wetting characterization using contact angle measurements. // Nature Protocols. 2018. V. 13. P. 1521–1538.
  55. Rezaei M., Warsinger D.M., Lienhard J.H., Duke M.C., Matsuura T., Samhaber W.M. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. // Water Research. 2018. V. 139. P. 329−352.
  56. Scanning probe microscopy and spectroscopy: Theory, techniques, and applications. / Ed. by Dawn Bonnell. Cambridge: Wiley, 2001. 516 p.
  57. Surface Analysis by auger and X-Ray photoelectron spectroscopy. / Eds by Briggs D., Grant J.T. Chichester: IM Publ., 2003. 505 p.
  58. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Chichester: John Wiley, 1992. 295 p.
  59. Dmitriev S.N., Kravets L.I., Sleptsov V.V., Elinson V.M., Potryasai V.V. Hydrophilization of the surface of polyvinylidene fluoride membranes in non-polymerizing gas plasma. // Heavy Ion Physics, FLNR Scientific Report 1999–2000. JINR Dubna, Russia. 2001. P. 225−226.
  60. Quere D. Wetting and roughness. // Ann. Rev. Mater. Res. 2008. V. 38. P. 71−99.
  61. Arkles B. Hydrophobicity, hydrophilicity and silanes. // Paint and Coatings Industry. 2006. V. 22. P. 114−135.
  62. Law K.Y., Zhao H., Samuel B. Adhesion of water on flat polymer surfaces and superhydrophobic surfaces. // NSTI-Nanotech. 2010. V. 1. P. 581− 584.
  63. Nishime T.M.C., Toth A., Hein L.R.O., Kostov K.G. Surface characteristics analysis of polypropylene treated by dielectric barrier discharge at atmospheric pressure. // J. Phys. Confer. Ser. 2012. V. 370. Article 012025.
  64. Kostov K.G., Ueda M., Tan I.H., Leite N.F., Beloto A.F., Gomes G.F. Structural effect of nitrogen plasma-based ion implantation on ultra-high molecular weight polyethylene. // Surf. Coat. Technol. 2004. V. 186. P. 287−290.
  65. Kolska Z., Reznickova A., Hnatowicz V. Svorcik V. PTFE surface modification by Ar plasma and its characterization. // Vacuum. 2012. V. 86. P. 643−647.
  66. Hubert J., Mertens J., Dufour T., Vandencasteele N., Reniers F., Viville P., Lazzaroni R., Raes M., Terryn H. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma. // J. Mater. Res. 2015. V. 30. P. 3177–3191.
  67. Bismark A., Schulz A., Zell H., Springer J., Tahhan R., Klapotke T.M., Michaeli W. Influence of fluorination on the properties of carbon fibers. // J. Fluor. Chem. 1997. V. 84. P. 127−134.
  68. Лучников П.А. Управление качеством вакуумных фторполимерных покрытий направленной электронной обработкой. // Вестник науки Сибири. Инженерные науки. 2011. № 1. С. 167−180.
  69. Козловцев В.А., Голованчиков А.Б., Козловцев Е.В., Алейникова Т.П. Регулирование электретных свойств полимерных материалов. // Известия ВолгГТУ. 2021. № 5. С. 70−74.
  70. Grytsenko K., Ksianzou V., Kolomzarov Y., Lytvyn P., Dietzel B., Schrader S. Fluoropolymer film formation by electron activated vacuum deposition. // Surfaces. 2021. V. 4. P. 66–80.
  71. Салем Р.Р. Теория двойного слоя. М.: Физматлит. 2003. 104 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изображения поверхностного слоя, полученные методом РЭМ, исходной ПЭТФ ТМ с диаметром пор 250 нм (а), мембран с покрытием из СВМПЭ толщиной 300 (б) и 500 нм (в); мембран с покрытием из ПТФЭ толщиной 300 (г) и 500 нм (д); обратная сторона модифицированной мембраны (е).

Скачать (583KB)
3. Рис. 2. Трехмерные изображения поверхности, полученные методом АСМ, ПЭТФ ТМ с диаметром пор 250 нм после нанесения покрытия из СВМПЭ толщиной 300 (а) и 500 нм (б), после нанесения покрытия из ПТФЭ толщиной 300 (в) и 500 нм (г); сканирование произведено непосредственно после изготовления образцов мембран.

Скачать (122KB)
4. Рис. 3. Изменение потока конденсата во времени в процессе мембранной дистилляции исходных трековых мембран из ПЭТФ и ПП (а) и композиционных мембран с покрытием из ПТФЭ толщиной 300 (1) и 500 нм (2), с покрытием из СВМПЭ толщиной 300 (3) и 500 нм (4), осажденным методом ЭЛД (б)

Скачать (155KB)
5. Рис. 4. Изменение угла смачивания водой (а), величины LEPW (б) и поверхностной шероховатости (в) покрытий из СВМПЭ и ПТФЭ в зависимости от их толщины при хранении композиционных мембран в течение 5 лет.

Скачать (235KB)
6. Рис. 5. Трехмерные изображения поверхности, полученные методом АСМ, ПЭТФ ТМ с диаметром пор 250 нм после нанесения покрытия из СВМПЭ толщиной 300 (а) и 500 нм (б), после нанесения покрытия из ПТФЭ толщиной 300 (в) и 500 нм (г); сканирование произведено после хранения образцов мембран в течение 5 лет.

Скачать (305KB)
7. Рис. 6. Спектры РФЭС атомов С1s покрытий из СВМПЭ (а) и ПТФЭ (б) толщиной 500 нм, осажденных методом электронно-лучевого диспергирования; измерение произведено после хранения композиционных мембран в течение 5 лет.

Скачать (125KB)

© Российская академия наук, 2024