Quality by Design Perspective for Designing Foam-based Formulation: Current State of Art


Citar

Texto integral

Resumo

Foam-based delivery systems contain one or more active ingredients and dispersed solid or liquid components that transform into gaseous form when the valve is actuated. Foams are an attractive and effective delivery approach for medical, cosmetic, and pharmaceutical uses. The foams-based delivery systems are gaining attention due to ease of application as they allow direct application onto the affected area of skin without using any applicator or finger, hence increasing the compliance and satisfaction of the patients. In order to develop foam-based delivery systems with desired qualities, it is vital to understand which type of material and process parameters impact the quality features of foams and which methodologies may be utilized to investigate foams. For this purpose, Quality-by-Design (QbD) approach is used. It aids in achieving quality-based development during the development process by employing the QbD concept. The critical material attributes (CMAs) and critical process parameters (CPPs) were discovered through the first risk assessment to ensure the requisite critical quality attributes (CQAs). During the initial risk assessment, the high-risk CQAs were identified, which affect the foam characteristics. In this review, the authors discussed the various CMAs, CPPs, CQAs, and risk factors associated in order to develop an ideal foam-based formulation with desired characteristics.

Sobre autores

Mohit Kumar

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Devesh Kumar

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Shubham Singh

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Shruti Chopra

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Email: info@benthamscience.net

Syed Mahmood

Department of Pharmaceutical Technology, Faculty of Pharmacy,, Universiti Malaya

Email: info@benthamscience.net

Amit Bhatia

Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU)

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Hoc D, Haznar-Garbacz D. Foams as unique drug delivery systems. Eur J Pharm Biopharm 2021; 167: 73-82. doi: 10.1016/j.ejpb.2021.07.012 PMID: 34325002
  2. Monograph T. European directorate for the quality of medicines & healthcare. 2017. Available from: https://www.edqm.eu/en/
  3. Purdon CH, Haigh JM, Surber C, Smith EW. Foam drug delivery in dermatology: Beyond the scalp. Am J Drug Deliv 2003; 1(1): 71-5. doi: 10.2165/00137696-200301010-00006
  4. Zhao Y, Jones SA, Brown MB. Dynamic foams in topical drug delivery. J Pharm Pharmacol 2010; 62(6): 678-84. doi: 10.1211/jpp.62.06.0003 PMID: 20636854
  5. Farkas D, Kállai-Szabó N, Antal I. Foams as carrier systems for pharmaceuticals and cosmetics. Acta Pharmaceut Hung 2019; 89: 5. doi: 10.33892/aph.2019.89.5-15
  6. Shen X, Zhao L, Ding Y, et al. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. J Hazard Mater 2011; 186(2-3): 1773-80. doi: 10.1016/j.jhazmat.2010.12.071 PMID: 21227581
  7. Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: Are they the answer to the dilemma of topical nanoparticles? Nanomedicine 2010; 6(2): 227-36. doi: 10.1016/j.nano.2009.08.002 PMID: 19715774
  8. Arzhavitina A, Steckel H. Foams for pharmaceutical and cosmetic application. Int J Pharm 2010; 394(1-2): 1-17. doi: 10.1016/j.ijpharm.2010.04.028 PMID: 20434532
  9. Shinde NG, Aloorkar NH, Bangar BN, Deshmukh SM, Shirke MV, Kale BB. Pharmaceutical foam drug delivery system: General considerations. Indo Am J Pharm Res 2013; 3: 1322-7.
  10. Cantat I, Cohen-Addad S, Elias F, et al. Foams: Structure and dynamics. OUP Oxford 2013. doi: 10.1093/acprof:oso/9780199662890.001.0001
  11. Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J Dispers Sci Technol 2023; 1-14. doi: 10.1080/01932691.2023.2188923
  12. Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234: 123696. doi: 10.1016/j.ijbiomac.2023.123696 PMID: 36801273
  13. Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: Their current status and future perspective. AAPS PharmSciTech 2023; 24(6): 155. doi: 10.1208/s12249-023-02616-6 PMID: 37468691
  14. Kumar M, Mandal UK, Mahmood S. Novel drug delivery system. Adv Mod Approaches Drug Deliv 2023; 1-32.
  15. Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022; 74: 103533. doi: 10.1016/j.jddst.2022.103533
  16. Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A recent review on bio-availability enhancement of poorly water-soluble drugs by using bioenhancer and nanoparticulate drug delivery system. Curr Pharm Des 2022; 28(39): 3212-24. doi: 10.2174/1381612829666221021152354 PMID: 36281868
  17. Kumar M, Thakur A, Mandal UK, Thakur A, Bhatia A. Foam-based drug delivery: A newer approach for pharmaceutical dosage form. AAPS PharmSciTech 2022; 23(7): 244. doi: 10.1208/s12249-022-02390-x PMID: 36042060
  18. Kumar M, Mahmood S, Mandal UK. An updated account on formulations and strategies for the treatment of burn infection - A review. Curr Pharm Des 2022; 28(18): 1480-92. doi: 10.2174/1381612828666220519145859 PMID: 35598231
  19. Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253(Pt 6): 127331. doi: 10.1016/j.ijbiomac.2023.127331 PMID: 37820901
  20. Kumar M, Hilles AR, Almurisi SHA, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations-A review. JCIS Open 2023; 100095.
  21. Prociak A, Kurańska M, Cabulis U, et al. Effect of bio-polyols with different chemical structures on foaming of polyurethane systems and foam properties. Ind Crops Prod 2018; 120: 262-70. doi: 10.1016/j.indcrop.2018.04.046
  22. Wu JW, Sung WF, Chu HS. Thermal conductivity of polyurethane foams. Int J Heat Mass Transf 1999; 42(12): 2211-7. doi: 10.1016/S0017-9310(98)00315-9
  23. Rieger M. Foams in personal care products. Foam Theory Meas Appl 1996; 57: 381-412.
  24. Leyden JJ, Del Rosso JQ. The effect of benzoyl peroxide 9.8% emollient foam on reduction of Propionibacterium acnes on the back using a short contact therapy approach. J Drugs Dermatol 2012; 11(7): 830-3. PMID: 22777224
  25. Afolabi LO, Ariff ZM, Hashim SFS, et al. Syntactic foams formulations, production techniques, and industry applications: A review. J Mater Res Technol 2020; 9(5): 10698-718. doi: 10.1016/j.jmrt.2020.07.074
  26. Tamarkin D. Foam: A unique delivery vehicle for topically applied formulations. Handbook of formulating dermal applications: A definitive practical guide. Wiley Online Library 2016; pp. 233-60. doi: 10.1002/9781119364221.ch9
  27. Kiss G, Rusu G, Peter F, Tănase I, Bandur G. Recovery of flexible polyurethane foam waste for efficient reuse in industrial formulations. Polymers 2020; 12(7): 1533. doi: 10.3390/polym12071533 PMID: 32664336
  28. Fang Q, Hanna MA. Characteristics of biodegradable Mater-Bi®-starch based foams as affected by ingredient formulations. Ind Crops Prod 2001; 13(3): 219-27. doi: 10.1016/S0926-6690(00)00079-0
  29. Fang Q, Hanna MA. Mechanical properties of starch-based foams as affected by ingredient formulations and foam physical characteristics. Trans ASAE 2000; 43(6): 1715-23. doi: 10.13031/2013.3073
  30. Vora D, Dandekar AA, Srivastava RK, Athar M, Banga AK. Development and evaluation of a topical foam formulation for decontamination of warfare agents. Mol Pharm 2022; 19(12): 4644-53. doi: 10.1021/acs.molpharmaceut.2c00636 PMID: 36170149
  31. Derikvand Z, Riazi M. Experimental investigation of a novel foam formulation to improve foam quality. J Mol Liq 2016; 224: 1311-8. doi: 10.1016/j.molliq.2016.10.119
  32. Joy J, Abraham J, Sunny J, Mathew J, George SC. Hydrophobic, superabsorbing materials from reduced graphene oxide/MoS2 polyurethane foam as a promising sorbent for oil and organic solvents. Polym Test 2020; 87: 106429. doi: 10.1016/j.polymertesting.2020.106429
  33. Li H, Liu L, Yang F. Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar Pollut Bull 2012; 64(8): 1648-53. doi: 10.1016/j.marpolbul.2012.05.039 PMID: 22749062
  34. Tamarkin D, Shifrin H, Keynan R, et al. Oil foamable carriers and formulations. U.S. Patent 20170181970A1, 2017.
  35. Bureiko A, Trybala A, Kovalchuk N, Starov V. Current applications of foams formed from mixed surfactant–polymer solutions. Adv Colloid Interface Sci 2015; 222: 670-7. doi: 10.1016/j.cis.2014.10.001 PMID: 25455806
  36. Tamarkin D, Gazal E, Papiashvili I, Hazot Y, Schuz D, Keynan R. Surfactant-free water-free foamable compositions, breakable foams and gels and their uses. U.S. Patent 10238746B2, 2019.
  37. Mccall HG, Scifres CJ, Merkle MG. Influence of foam adjuvants on activity of selected herbicides. Weed Sci 1974; 22(4): 384-8. doi: 10.1017/S0043174500037498
  38. Madoriya N. Biosurfactants: A new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol 2013; 2: 113.
  39. Knoth D, Rincón-Fontán M, Stahr PL, et al. Evaluation of a biosurfactant extract obtained from corn for dermal application. Int J Pharm 2019; 564: 225-36. doi: 10.1016/j.ijpharm.2019.04.048 PMID: 31004716
  40. Zhang Z, Chen X, Li C, et al. Foam sclerotherapy during shunt surgery for portal hypertension and varices. Open Med 2017; 12(1): 384-90. doi: 10.1515/med-2017-0055 PMID: 29177197
  41. Ortega FS, Valenzuela FAO, Scuracchio CH, Pandolfelli VC. Alternative gelling agents for the gelcasting of ceramic foams. J Eur Ceram Soc 2003; 23(1): 75-80. doi: 10.1016/S0955-2219(02)00075-4
  42. Miyamoto R, Yasuhara S, Shikuma H, Ohshima M. Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents. Polym Eng Sci 2014; 54(9): 2075-85. doi: 10.1002/pen.23758
  43. Yu LX, Amidon G, Khan MA, et al. Understanding pharmaceutical quality by design. AAPS J 2014; 16(4): 771-83. doi: 10.1208/s12248-014-9598-3 PMID: 24854893
  44. Falusi F, Budai-Szűcs M, Csányi E, et al. Investigation of the effect of polymers on dermal foam properties using the QbD approach. Eur J Pharm Sci 2022; 173: 106160. doi: 10.1016/j.ejps.2022.106160 PMID: 35248732
  45. Yu LX. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm Res 2008; 25(4): 781-91. doi: 10.1007/s11095-007-9511-1 PMID: 18185986
  46. Grangeia HB, Silva C, Simões SP, Reis MS. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm 2020; 147: 19-37. doi: 10.1016/j.ejpb.2019.12.007 PMID: 31862299
  47. Mishra V, Thakur S, Patil A, Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv 2018; 15(8): 737-58. doi: 10.1080/17425247.2018.1504768 PMID: 30044646
  48. Patil AS, Pethe AM. Quality by design (QbD): A new concept for development of quality pharmaceuticals. Int J Pharm Qual Assur 2013; 4(2): 13-9.
  49. Cocco P, Ayaz-Shah A, Messenger MP, West RM, Shinkins B. Target product profiles for medical tests: A systematic review of current methods. BMC Med 2020; 18(1): 119. doi: 10.1186/s12916-020-01582-1 PMID: 32389127
  50. Namjoshi S, Dabbaghi M, Roberts MS, Grice JE, Mohammed Y. Quality by design: Development of the Quality Target Product Profile (QTPP) for semisolid topical products. Pharmaceutics 2020; 12(3): 287. doi: 10.3390/pharmaceutics12030287 PMID: 32210126
  51. Bakonyi M, Berkó S, Kovács A, et al. Application of quality by design principles in the development and evaluation of semisolid drug carrier systems for the transdermal delivery of lidocaine. J Drug Deliv Sci Technol 2018; 44: 136-45. doi: 10.1016/j.jddst.2017.12.001
  52. Kis N, Kovács A, Budai-Szűcs M, et al. Investigation of silicone- containing semisolid in situ film-forming systems using QbD tools. Pharmaceutics 2019; 11(12): 660. doi: 10.3390/pharmaceutics11120660 PMID: 31817871
  53. Gray VA. Power of the dissolution test in distinguishing a change in dosage form critical quality attributes. AAPS PharmSciTech 2018; 19(8): 3328-32. doi: 10.1208/s12249-018-1197-7 PMID: 30350251
  54. Kovács A, Berkó S, Csányi E, Csóka I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the quality by design method. Eur J Pharm Sci 2017; 99: 246-57. doi: 10.1016/j.ejps.2016.12.020 PMID: 28012940
  55. Charoo NA, Shamsher AAA, Zidan AS, Rahman Z. Quality by design approach for formulation development: A case study of dispersible tablets. Int J Pharm 2012; 423(2): 167-78. doi: 10.1016/j.ijpharm.2011.12.024 PMID: 22209997
  56. Farkas D, Kállai-Szabó N, Sárádi-Kesztyűs Á, et al. Investigation of propellant-free aqueous foams as pharmaceutical carrier systems. Pharm Dev Technol 2021; 26(3): 253-61. doi: 10.1080/10837450.2020.1863426 PMID: 33307920
  57. Mirtič J, Papathanasiou F, Temova Rakuša Ž, GosencaMatjaž M, Roškar R, Kristl J. Development of medicated foams that combine incompatible hydrophilic and lipophilic drugs for psoriasis treatment. Int J Pharm 2017; 524(1-2): 65-76. doi: 10.1016/j.ijpharm.2017.03.061 PMID: 28359820
  58. Bikard J, Bruchon J, Coupez T, Silva L. Numerical simulation of 3D polyurethane expansion during manufacturing process. Colloids Surf A Physicochem Eng Asp 2007; 309(1-3): 49-63. doi: 10.1016/j.colsurfa.2007.04.025
  59. Yadav NP, Rai VK, Mishra N, et al. A novel approach for development and characterization of effective mosquito repellent cream formulation containing citronella oil. Biomed Res Int 2014; 2014: 786084. doi: 10.1155/2014/786084
  60. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 2006; 28(5): 359-70. doi: 10.1111/j.1467-2494.2006.00344.x PMID: 18489300
  61. Velasco M, González-Fernández D, Rodriguez-Martín M, Sánchez-Regaña M, Pérez-Barrio S. Patient and physician satisfaction with calcipotriol and betamethasone dipropionate aerosol foam in the treatment of plaque psoriasis on the body. Dermo-Sifiliogra Proc 2019; 110(9): 752-8. doi: 10.1016/j.adengl.2019.07.022
  62. Thiry J, Krier F, Evrard B. A review of pharmaceutical extrusion: Critical process parameters and scaling-up. Int J Pharm 2015; 479(1): 227-40. doi: 10.1016/j.ijpharm.2014.12.036 PMID: 25541517
  63. Kumari C, Chak SK. A review on magnetically assisted abrasive finishing and their critical process parameters. Manuf Rev 2018; 5: 13. doi: 10.1051/mfreview/2018010
  64. Zhang J, Wu CY, Pan X, Wu C. On identification of critical material attributes for compression behaviour of pharmaceutical diluent powders. Materials 2017; 10(7): 845. doi: 10.3390/ma10070845 PMID: 28773204
  65. Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym 2022; 278: 118968. doi: 10.1016/j.carbpol.2021.118968 PMID: 34973783
  66. Azad MA, Capellades G, Wang AB, et al. Impact of critical material attributes (CMAs)-particle shape on miniature pharmaceutical unit operations. AAPS PharmSciTech 2021; 22(3): 98. doi: 10.1208/s12249-020-01915-6 PMID: 33709195
  67. Beg S, Hasnain MS. Pharmaceutical quality by design: Principles and applications. Academic Press 2019.
  68. Agency EM. ICH guideline Q9 on quality risk management ICH guideline Q9 on quality risk management table of contents. 2015. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use-ich-guideline-q9-quality-risk-management-step-5-first-version_en.pdf
  69. Liliana L. A new model of Ishikawa diagram for quality assessment. IOP Conf Ser: Mater Sci Eng 2016; 161: 12099. doi: 10.1088/1757-899X/161/1/012099
  70. Qin J, Xi Y, Pedrycz W. Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method. Appl Soft Comput 2020; 89: 106134. doi: 10.1016/j.asoc.2020.106134
  71. Wang ZC, Ran Y, Chen Y, Yang X, Zhang G. Group risk assessment in failure mode and effects analysis using a hybrid probabilistic hesitant fuzzy linguistic MCDM method. Expert Syst Appl 2022; 188: 116013. doi: 10.1016/j.eswa.2021.116013
  72. Huang J, You JX, Liu HC, Song MS. Failure mode and effect analysis improvement: A systematic literature review and future research agenda. Reliab Eng Syst Saf 2020; 199: 106885. doi: 10.1016/j.ress.2020.106885
  73. Häring I, Häring I. Failure modes and effects analysis. Tech Safety, Reliab Resil Methods Process 2021; pp. 101-26.
  74. Koilpillai J, Narayanasamy D. Development and characterization of novel surface engineered Depofoam: A QbD coupled failure modes and effects analysis risk assessment-based optimization studies. J Liposome Res 2023; 1-17. doi: 10.1080/08982104.2023.2208662 PMID: 37144416
  75. Waghule T, Dabholkar N, Gorantla S, Rapalli VK, Saha RN, Singhvi G. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach. Biomed Pharmacother 2021; 141: 111940. doi: 10.1016/j.biopha.2021.111940 PMID: 34328089
  76. Castellanos MAM, Costa Monteiro E, Louzada DR. Quality by design and failure mode and effects analysis applied to the development of electromedical technology: Preliminary results. Measurement: Sensors 2021; 18: 100303. doi: 10.1016/j.measen.2021.100303
  77. N Politis S, Colombo P, Colombo G, M Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm 2017; 43(6): 889-901. doi: 10.1080/03639045.2017.1291672 PMID: 28166428
  78. Rawal M, Singh A, Amiji MM. Quality-by-design concepts to improve nanotechnology-based drug development. Pharm Res 2019; 36(11): 153. doi: 10.1007/s11095-019-2692-6 PMID: 31482243
  79. Raghavan L, Brown M, Michniak-Kohn B, Ng S, Sammeta S. In vitro release tests as a critical quality attribute in topical product development. The Role of Microstructure in Topical Drug Product Development. Springer 2019; pp. 47-87. doi: 10.1007/978-3-030-17355-5_2
  80. De Feo J, Bar-El Z. Creating strategic change more efficiently with a new design for six sigma process. J Change Manag 2002; 3(1): 60-80. doi: 10.1080/714042521
  81. Eichenfield L, Gold LS, Silverberg N, et al. Clinical safety and pharmacokinetics of FMX101 4% topical minocycline foam in pediatric patients for the treatment of moderate-to-severe acne vulgaris. SKIN J Cutan Med 2019; 3: S2-2. doi: 10.25251/skin.3.supp.2
  82. Gold LS, Del Rosso JQ, Kircik L, et al. Minocycline 1.5% foam for the topical treatment of moderate to severe papulopustular rosacea: Results of 2 phase 3, randomized, clinical trials. J Am Acad Dermatol 2020; 82(5): 1166-73. doi: 10.1016/j.jaad.2020.01.043 PMID: 32004648
  83. Blume-Peytavi U, Hillmann K, Dietz E, Canfield D, Garcia Bartels N. A randomized, single-blind trial of 5% minoxidil foam once daily versus 2% minoxidil solution twice daily in the treatment of androgenetic alopecia in women. J Am Acad Dermatol 2011; 65(6): 1126-1134.e2. doi: 10.1016/j.jaad.2010.09.724 PMID: 21700360
  84. Zhao Y, Brown MB, Jones SA. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams. Int J Pharm 2010; 383(1-2): 277-84. doi: 10.1016/j.ijpharm.2009.09.029 PMID: 19772905
  85. Campieri M, Corbelli C, Gionchetti P, et al. Spread and distribution of 5-ASA colonic foam and 5-ASA enema in patients with ulcerative colitis. Dig Dis Sci 1992; 37(12): 1890-7. doi: 10.1007/BF01308084 PMID: 1473437
  86. Franz TJ, Parsell DA, Halualani RM, et al. Betamethasone valerate foam 0.12%: A novel vehicle with enhanced delivery and efficacy. Int J Dermatol 1999; 38(8): 628-32. doi: 10.1046/j.1365-4362.1999.00782.x PMID: 10487457
  87. Frieder J, Kivelevitch D, Menter A. Calcipotriene betamethasone dipropionate aerosol foam in the treatment of plaque psoriasis: A review of the literature. Ther Deliv 2017; 8(9): 737-46. doi: 10.4155/tde-2017-0058 PMID: 28659016
  88. Gottlieb AB, Ford RO, Spellman MC. The efficacy and tolerability of clobetasol propionate foam 0.05% in the treatment of mild to moderate plaque-type psoriasis of nonscalp regions. J Cutan Med Surg 2003; 7(3): 185-92. doi: 10.1177/120347540300700301 PMID: 12704534
  89. Kurowska A, Ghate V, Kodoth A, et al. Non-propellant foams of green nano-silver and sulfadiazine: Development and in vivo evaluation for burn wounds. Pharm Res 2019; 36(8): 122. doi: 10.1007/s11095-019-2658-8 PMID: 31218556
  90. Haznar-Garbacz D, Garbacz G, Weitschies W. Development of oral foams for topical treatment of inflammatory bowel disease. J Drug Deliv Sci Technol 2019; 50: 287-92. doi: 10.1016/j.jddst.2019.01.022
  91. Li WZ, Zhao N, Zhou YQ, et al. Post-expansile hydrogel foam aerosol of PG-liposomes: A novel delivery system for vaginal drug delivery applications. Eur J Pharm Sci 2012; 47(1): 162-9. doi: 10.1016/j.ejps.2012.06.001 PMID: 22705561
  92. Cash K, Quigley MO. The vehicle found in ketoconazole foam 2% is preferred by patients with mild to severe seborrheic dermatitis over other vehicles, regardless of gender, age, or ethnicity. JAAD 2008; 58(2): 92.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024