Conceptual aspects of designing mineral powder compositions from raw materials of natural and technogenic origin

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Research related to the development of the criteria for optimizing the composition of building mixtures based on mineral powders is currently still relevant and is one of the priority issues in the industry. Based on the fact that the processes of disintegration of raw material of rocks are predominantly used in preparation for its further technological processing, this paper proposes to use the parameter of the surface activity of the resulting powder system to assess the process of mechanical activation during material crushing, and to use the analog value of the Hamaker constant to optimize the composition of the mixture based on the principles of maximum dispersion interaction of powder particles. Using the example of rocks of various genetic groups of natural and technogenic origin (basalt, quartz and polymineral silica-containing sands, saponite-containing waste from the enrichment process of kimberlite ores), the algorithm for calculating the above-mentioned characteristics is shown. It has been established that with the same duration of grinding (and comparable values of the dimensional characteristics of the resulting powders), the surface activity increases in the following series: polymineral sand, quartz sand, saponite-containing material. The dispersion obtained by mechanical grinding of serpentine is characterized by the maximum dispersion interaction of the particles of the studied mineral powders (basalt, saponite-containing waste, serpentine), estimated by the values of the analog Hamaker constant.

Texto integral

Acesso é fechado

Sobre autores

M. Frolova

Northern (Arctic) Federal University named after M.V. Lomonosov

Autor responsável pela correspondência
Email: m.aizenstadt@narfu.ru

Candidate of Sciences (Chemistry) 

Rússia, 17, Severnaya Dvina Emb., Arkhangelsk, 163002

Bibliografia

  1. Shiryaev A.O., Vysotskaya M.A. Mineral powder in the modern system of designing asphalt concrete mixtures. Vestnik BGTU named after V.G. Shukhov. 2022. No. 2, pp. 8–19. (In Russian). EDN: CLKVKE. https://doi.org/10.34031/2071-7318-2021-7-2-8-19
  2. Yadykina V.V., Kuznetsova E.V., Lebedev M.S. Effect of mineral filler modification on the intensity of bitumen aging. Lecture Notes in Civil Engineering. 2021. Vol. 147, pp. 189–194. https://doi.org/10.1007/978-3-030-68984-1_28
  3. Patent RF No. 2016145039. Sposob polucheniya aktivirovannogo mineral`nogo poroshka dlya asfal`tobetona i krovel`nyx materialov iz kvarczevogo peska i aktivirovannyj mineral`nyj poroshok dlya asfal`tobetona i krovel`nyx materialov [Method for producing activated mineral powder for asphalt concrete and roofing materials from quartz sand and activated mineral powder for asphalt concrete and roofing materials] / Mikhailov A.V., Nurislamov A.A., Rodionov D.N., Shchepelev A.V. Declared 2016.11.17. Published 17.05.2018. Bulletin No. 14. (In Russian).
  4. Kalashnikov V.I., Tarakanov O.V., Kuznetsov Yu.S., Volodin V.M., Belyakova E.A. New generation concretes based on dry fine-grained powder mixtures. Magazine of Civil Engineering. 2012. No. 8, pp. 47–53. (In Russian). EDN: PJWLHF. https://doi.org/10.5862/MCE.34.7
  5. Sokolova Yu.V., Nelyubova V.V., Aizenshtadt A.M., Strokova V.V. Rheology of soil concrete mixtures based on a polymer-organic binder with a mineral modifier. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 26–32. (In Russian). EDN: ADWNLR. https://doi.org/10.31659/0585-430X-2022-809-12-26-32
  6. Danilov V., Ayzenshtadt A., Kilyusheva N., Belyav A. Wood surface modification with an arabinogalactan–silica composition. Journal of Wood Chemistry and Technology. 2021. Vol. 41. Iss. 6, pp. 1–13. https://doi.org/10.1080/02773813.2021.1977828
  7. Zuev V.V., Potseluev L.N., Goncharov Yu.D. Kristallojenergetika kak osnova ocenki magnezial’nyh svojstv tverdotelyh materialov (vkljuchaja magnezial’nye cementy) [Crystal energetics as a basis for assessing the magnesia properties of solid materials (including magnesia cements)] Saint Petersburg: ALFAPOL. 2006. 119 p.
  8. Zuev V.V., Denisov G.A., Mochalov N.A., et al. Jenergoplotnost’ kak kriterij ocenki svojstv mineral’nyh i drugih kristallicheskih veshhestv [Energy density as a criterion for assessing the properties of mineral and other crystalline substances] Moscow: Polimedia. 2000. 352 p.
  9. Abramovskaya I.R., Aizenshtadt A.M., Lesovik V.S., Veshnyakova L.A., Frolova M.A., Kazlitin S.A. Calculation of energy intensity of rocks as raw material for production of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 10, pp. 23–25. (In Russian). EDN: PFGICX
  10. Lesovik V.S. Povyshenie jeffektivnosti proizvodstva stroitel’nyh materialov s uchetom genezisa gornyh porod [Improving the efficiency of production of building materials taking into account the genesis of rocks] Moscow: ASV. 2006. 526 p.
  11. Nelyubova V.V., Strokova V.V., Danilov V.E., Aizenshtadt A.M. Comprehensive activity analysis of silicacontaining raw materials for use in mechanical activation efficiency evaluations. Obogashchenie rud. 2022. No. 2, pp. 18–26. (In Russian). EDN: GTUQRF. https://doi.org/10.17580/or.2022.02.03
  12. Shamanina A.V., Kononova V.M., Danilov V.E., Frolova M.A., Aizenshtadt A.M. Aspects of determining the surface activity of disperse systems based on mineral powders. Materialovedenie. 2021. No. 7, pp. 30–36. (In Russian). EDN: ASLHNO. https://doi.org/10.31044/1684-579X-2021-0-7-30-36
  13. Frolova M.A. Methodical features of determining the specific surface energy of mineral quartz-containing powders. Vestnik BGTU named after V.G. Shukhov. 2022. No. 8, pp. 17–26. (In Russian). EDN: MYKOPA https://doi.org/10.34031/2071-7318-2022-7-8-17-26
  14. Frolova M.A., Lesovik V.S., Aizenshtadt A.M. Surface activity of rocks. Stroitel’nye Materialy [Construction Materials]. 2013. No. 11, pp. 71–74. (In Russian). EDN: RKXZQX
  15. Veshnyakova L.A., Aizenshtadt A.M., Frolova M.A. Assessment of surface activity of highly dispersed raw materials for composite building materials. Fizika i himija obrabotki materialov. 2015. No. 2, pp. 68–72. (In Russian). EDN: TQUWST
  16. Morozova M.V., Akulova M.V., Frolova M.A., Shchepochkina Yu.A. Determination of energy parameters of sands using the example of deposits in the Arkhangelsk region. Materialovedenie. 2020. No. 9, pp. 45–48. (In Russian). EDN: ATJJQE. https://doi.org/10.31044/1684-579X-2020-0-9-45-48
  17. Ayzenshtadt A.M., Drozdyuk T.A., Danilov V.E., Frolova M.A., Garamov G.A. Surface activity of concrete waste powders. Nanotehnologii v stroitel’stve. 2021. Vol. 13. No. 2, pp. 108–116. (In Russian). EDN: OQSFFR. https://doi.org/10.15828/2075-8545-2021-13-2-108-116
  18. Morozova M.V., Ayzenshtadt A.M., Akulova M.V., Frolova M.A. Phase-structural heterogeneity and activity of the surface of polymineral sand powders. Nanotehnologii v stroitel’stve. 2022. Vol. 14. No. 2, pp. 89–95. (In Russian). EDN: MRZQKR. https://doi.org/10.15828/2075-8545-2022-14-2-89-95
  19. Deryagin B.V., Churaev N.V., Muller V.M. Poverhnostnye sily [Surface forces]. Moscow: Nauka, 1985. 368 p.
  20. Deryagin B.V., Abrikosov E.M., Lifshits E.M. Molecular attraction of condensed bodies. Uspekhi fizicheskix nauk. 2015. Vol. 185. No. 9, pp. 982–1001. (In Russian). EDN: UHHNQB. https://doi.org/10.3367/UFNr.0185.201509i.0981
  21. Boynovich L.B. Long-range surface forces and their role in the development of nanotechnology. Uspehi himii. 2007. Vol. 76. No. 5, pp. 510–528. (In Russian). EDN: HZCBQD
  22. Boinovich L., Emelyanenko A. Wetting and surface forces. Advances in Colloid and Interface Science. 2011. Vol. 165. No. 2, pp. 60–69. https://doi.org/10.1016/j.cis.2011.03.002
  23. Ayzenshtadt A.M., Korolev E.V., Drozdyuk T.A., Danilov V.E., Frolova M.A. Possible Approach to Estimating the Dispersion Interaction in Powder Systems. Inorganic Materials: Applied Research. 2022. Vol. 13. No. 3, pp. 793–799. EDN: CMYWQR. https://doi.org/10.1134/S2075113322030029
  24. Guozhong C., Wang Y. Nanostruktury i nanomaterialy. Sintez, svojstva i primenenie. [Nanostructures and nanomaterials. Synthesis, properties and application]. Trans. from English by A.I. Efimov, S.I. Kargov. Moscow: Scientific World. 2012, 520 p.
  25. Frolova M.A., Tutygin A.S., Aizenshtadt A.M., Lesovik V.S., Makhova T.A., Pospelova T.A. Criterion for assessing the energy properties of a surface. Nanosistemy: fizika, himiya, matematika. 2011. Vol. 2. No. 4, pp. 120–125. (In Russian). EDN: OWOOPZ

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Functional dependence of the type Am1(Am12)=f(CS)

Baixar (128KB)

Declaração de direitos autorais © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2024