Bioavailable Nanocomposition of Chitosan-copper Nanoparticles as an Alternative to Antibiotics in BroilerFeed

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Pathogens pose a serious threat to agriculture as they reduce the growth rate and efficiency of farm birds, animals and cause economic losses. Therefore, there is a need for their use despite all the negative effects of antibiotics and bacterial resistance to them, and therefore, there is a need for effective alternatives that exclude the use of vaccines and drugs. An aggregatively stable nanocomposition of chitosan-nanoparticles of copper with an average size of the latter 25–30 nm was developed. The bactericidal effect of the nanocomposition was shown in vitro on pathogenic bacteria Enterococcus faecalis and investigated in vivo in the composition of broiler chickens’ drink and feed in comparison with antibiotic “Maxus”, used in their diet, on a wide range of pathogenic microorganisms. It was shown that the number of bacteria in broilers was 1.88% when the nanocomposition was administered, which is more than two times less compared to the group where the antibiotic was used.

全文:

受限制的访问

作者简介

K. Apryatina

National Research Lobachevsky State University of Nizhni Novgorod

编辑信件的主要联系方式.
Email: apryatina_kv@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603022

I. Egorov

Federal State Budget Scientific Institution Federal Scientific Center “All-Russian Research and Technological Poultry Institute”

Email: apryatina_kv@mail.ru
俄罗斯联邦, Sergiev Posad, 141311

S. Zaitsev

National Research Lobachevsky State University of Nizhni Novgorod

Email: apryatina_kv@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603022

G. Laptev

BIOTROF LLC

Email: apryatina_kv@mail.ru
俄罗斯联邦, Pushkin, St. Petersburg, 196602

E. Salomatina

National Research Lobachevsky State University of Nizhni Novgorod

Email: apryatina_kv@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603022

L. Smirnova

National Research Lobachevsky State University of Nizhni Novgorod

Email: apryatina_kv@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603022

A. Samodelkin

Scientific and educational center “Nizhny Novgorod REC”

Email: apryatina_kv@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603000

V. Frolov

AGROСHITIN LLC

Email: apryatina_kv@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603155

参考

  1. Rahman M.M., Alam Tumpa M.A., Zehravi M., Sarker M.T., Yamin M.D., Islam M.R. et al. // Antibiotics. 2022. V. 11. №. 5. P. 667. https://doi.org/10.3390/antibiotics11050667
  2. Burow E., Grobbel M., Tenhagen B.A., Simoneit C., Szabó I., Wendt D. et al. // Microb. Drug. Resist. 2020. V. 26. №. 9. P. 1098–1107. https://doi.org/10.1089/mdr.2019.0442
  3. Hedman H.D., Vasco K.A., Zhang L. // Animals. 2020. V. 10. №. 8. 1264. https://doi.org/10.3390/ani10081264
  4. Shang K., Wei B., Cha S.Y., Zhang J.F., Park J.Y., Lee Y.J. et al. //Animals. 2021. V. 11. №. 1. P. 154. https://doi.org/10.3390/ani11010154
  5. Massé D.I., Cata Saady N.M., Gilbert Y. // Animals. 2014. V. 4. №. 2. P. 146–163. https://doi.org/10.3390/ani4020146
  6. Chatellier V. Chatellier V. // Animal. 2021. V. 15. 100289. https://doi.org/10.1016/j.animal.2021.100289
  7. Jomova K., Makova M., Alomar S. Y., Alwasel S. H., Nepovimova E., Kuca K. et al. // Chem. Biol. Interact. 2022. V. 367. 110173. https://doi.org/10.1016/j.cbi.2022.110173
  8. Ruiz L.M., Libedinsky A., Elorza A.A. // Front. Mol. Biosci. 2021. V. 8. 711227. https://doi.org/10.3389/fmolb.2021.711227
  9. Ognik K., Sembratowicz I., Cholewińska E., Jankows-ki J., Kozłowski K., Juśkiewicz J. et al. // Anim. Sci. J. 2018. Т. 89. №. 3. P. 579–588. https://doi.org/10.1111/asj.12956
  10. Sharma M.C., Joshi C., Pathak N.N., Kaur H. // Res. Vet. Sci. 2005. Т. 79. №. 2. P. 113–123. https://doi.org/10.1016/j.rvsc.2004.11.015
  11. Парахонский А.П. // Естественно-гуманитарные исследования. 2015. № 4 (10). С. 73–84.
  12. Borkow G. // Curr. Chem. Biol. 2014. V. 8. №. 2. P. 89–102. https://doi.org/10.2174/2212796809666150227223857
  13. Scott A., Vadalasetty K.P., Łukasiewicz M., Jaworski S., Wierzbicki M., Chwalibog A. et al. // J. Anim. Physiol. Anim. Nutr. (Berl.) 2018. Т. 102. №. 1. P. e364–e373. https://doi.org/10.1111/jpn.12754
  14. Sharif M., Rahman M.A.U., Ahmed B., Abbas R.Z., Hassan F.U. // Biol. Trace Elem. Res. 2021. V. 199. №. 10. P. 3825–3836. https://doi.org/10.1007/s12011-020-02485-1
  15. Leeson S. // J. World’s Poult. Sci. 2009. V. 65. №. 3. P. 353–366. https://doi.org/10.1017/S0043933909000269
  16. Boyles M. S. P., Ranninger C., Reischl R., Rurik M., Tessadri R., Kohlbacher O. et al. // Part. Fibre. Toxicol. 2015. V. 13. P. 1–20. https://doi.org/10.1186/s12989-016-0160-6
  17. Ремпель А. А. // Успехи химии. 2007. Т. 76. №. 5. С. 474–500.
  18. Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. // Nat. Rev. Drug Discov. 2021. V. 20. №. 2. P. 101–124. https://doi.org/10.1038/s41573-020-0090-8
  19. Bezbaruah R., Chavda V.P., Nongrang L., Alom S., Deka K., Kalita T. et al. // Vaccines. 2022. V. 10. №. 11. 1946. https://doi.org/10.3390/vaccines10111946
  20. Yusuf A., Almotairy A.R.Z., Henidi H., Alshehri O.Y., Aldughaim M.S. // Polymers. 2023. V. 15. № 7. 1596. https://doi.org/10.3390/polym15071596
  21. Zafar A., Arshad R., Ur. Rehman A., Ahmed N., Akhtar H. // Vaccines. 2023. V. 11. №. 2. 490. https://doi.org/10.3390/vaccines11020490
  22. El-Kassas S., El-Naggar K., Abdo S.E., Abdo W., Kirrella A.A., El-Mehaseeb I. et al. // Anim. Prod. Sci. 2019. V. 60. №. 2. P. 254–268. https://doi.org/10.1071/AN18270
  23. Sizova E., Miroshnikov S., Lebedev S., Usha B., Shabunin S. // Anim. Nutr. 2020. V. 6. №. 2. P. 185–191. https://doi.org/10.1016/j.aninu.2019.11.007
  24. El-Kazaz S.E., Hafez M.H. // J. Adv. Vet. Anim. Res. 2020. V. 7. №. 1. 16. https://doi.org/10.5455/javar.2020.g388
  25. Anwar M.I., Awais M.M., AkhtarM., Navid M.T., Muhammad F. // Worlds Poult. Sci. J. 2019. V. 75. №. 2. P. 261–272. https://doi.org/10.1017/S0043933919000199
  26. Kalińska A., Jaworski S., Wierzbicki M., Gołębiews-ki M. // Int. J. Mol. Sci. 2019. V. 20. №. 7. 1672. https://doi.org/10.3390/ijms20071672
  27. Scott A., Vadalasetty K.P., Chwalibog A., Sawosz E. // Nanotechnol. Rev. 2018. V. 7. №. 1. P. 69–93. https://doi.org/10.1515/ntrev-2017-0159
  28. Chen R.R., Li Y.J., Chen J.J., Lu C.L. // Carbohydr. Polym. 2020. V. 247. 116740. https://doi.org/10.1016/j.carbpol.2020.116740
  29. Wang W., Xue C., Mao X. // Int. J. Biol. Macromol. 2020. V. 164. P. 4532–4546. https://doi.org/10.1016/j.ijbiomac.2020.09.042
  30. Xu Y., Shi B., Yan S., Li J., Li T., Guo Y. et al. // Czech J. Anim. Sci. 2014. V. 59. P. 156–163. https://doi.org/10.17221/7339-CJAS
  31. Sangnim T., Dheer D., Jangra N., Huanbutta K., Puri V., Sharma A. // Pharmaceutics. 2023. V. 15. № 9. 2361. https://doi.org/10.3390/pharmaceutics15092361
  32. Apryatina K.V., Glazova I.A., Koryagin A.S., Zaitsev S.D., Smirnova L.A. // J. Polym. Res. 2022. V. 29. №. 9. 378. https://doi.org/10.1007/s10965-022-03225-w
  33. Apryatina K.V., Murach E.I., Amarantov S.V., Erlykina E.I., Veselov V.S., Smirnova L.A. // Appl. Biochem. Microbiol. 2022. V. 58. №. 2. P. 126–131. https://doi.org/10.1134/S0003683822020028
  34. Lang X., Wang T., Sun M., Chen X., Liu Y. // Int. J. Biol. Macromol. 2020. V. 154. P. 433–445. https://doi.org/10.1016/j.ijbiomac.2020.03.148
  35. Hassan F.A., Abd El-Maged M., El-Halim H., Ramadan G. // J. Anim. Health Prod. 2021. V. 9. № 2. P. 119–131. https://doi.org/10.17582/journal.jahp/2021/9.2.119.131
  36. Tufan T., Arslan C. // S. Afr. J. Anim. Sci. 2020. V. 50. №. 5. https://doi.org/10.4314/sajas.v50i5.3
  37. Yue X., Hu L., Fu X., Lv M., Han X. // Czech J. Anim. Sci. 2017. V. 62. №. 1. P. 15–21. https://doi.org/10.17221/86/2015-CJAS
  38. Menconi A., Pumford N.R., Morgan M.J., Bielke L.R., Kallapura G., Latorre J.D. et al. // Food. Pathog. Dis. 2014. V. 11. №. 2. P. 165–169. https://doi.org/10.1089/fpd.2013.1628
  39. Nuengjamnong C., Angkanaporn K. // Ital. J. Anim. Sci. 2018. V. 17. №. 2. P. 428–435. https://doi.org/10.1080/1828051X.2017.1373609
  40. Shagdarova B., Konovalova M., Varlamov V., Svirshchevskaya E. // Polymers. 2023. V. 15. №. 19. 3967. https://doi.org/10.3390/polym15193967
  41. Akintelu S.A., Oyebamiji A.K., Olugbeko S.C., Latona D.F. // CRGSC. 2021. V. 4. 100176. https://doi.org/10.1016/j.crgsc.2021.100176
  42. Liu P., Wang H., Li X., Rui M., Zeng H. // RSC Adv. 2015. V. 5. №. 97. P. 79738–79745. https://doi.org/10.1039/C5RA14933A
  43. Ismail M. I. M. // Mater. Chem. Phys. 2020. V. 240. 122283. https://doi.org/10.1016/j.matchemphys.2019.122283
  44. Лисичкин Г.В., Оленин А.Ю., Кулакова И.И. Химия поверхности неорганических наночастиц. М.: Техносфера, 2020. 380 с.
  45. Хабриев Р.У. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Медицина, 2005. 827 с.
  46. Апрятина К.В., Зайцев С.Д., Смирнова Л.А., Фролов В.Г. Патент RU 2776050C1. 2022.
  47. Воюцкий С.С. Курс коллоидной химии. М.: “Химия”, 1975. 512 с.
  48. Литманович О.Е. // Высокомолекулярные соединения. Серия C. 2008. Т. 50. № 7. С. 1370–1396.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Plasmon absorption band of chitosan-stabilized copper NPS with MM2 × 105, [Cu] = 1 wt%.

下载 (53KB)
3. Fig. 2. Scheme of stabilization of copper NPS by chitosan functional groups.

下载 (298KB)
4. Fig. 3. Diffractogram of the chitosan-NP copper composition obtained in microwave radiation.

下载 (128KB)
5. Fig. 4. Absorption spectra of copper nanodispersions stabilized with chitosan with different MM: 1 — 0.2 × 105, 2 — 1×105, 3 — 2×105, [ Cu] = 1% by weight.

下载 (103KB)
6. 5. Diffractogram of the chitosan-NP copper composition, MM chitosan 1 × 105 (a), MM chitosan 2 × 105 (b).

下载 (234KB)
7. Fig. 6. The content of cellulolytics, %.

下载 (260KB)
8. 7. The content of bacilli (a), %; lactobacilli (b), %; bifidobacteria (c), %; PLA-synthesizing bacteria (d), %.м

下载 (299KB)
9. 8. Relative abundance of pathogens in the studied samples, %.

下载 (199KB)

版权所有 © Russian Academy of Sciences, 2025