Определение чувствительности бактериальных клеток к бактериофагу с помощью компактного акустического анализатора

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе впервые продемонстрированы возможности компактной акустической сенсорной системы для оценки воздействия бактериофагов на микробные клетки и оценки их чувствительности к бактериофагам. Установлено, что с помощью разработанной системы можно оценить активность бактериофагов в отношении микробных клеток в течение 5 мин без учета времени культивирования микробных клеток для проведения анализа. Полученные результаты являются перспективными для дальнейшего развития акустической сенсорной системы при фаготерапии.

Полный текст

Доступ закрыт

Об авторах

О. И. Гулий

Федеральный исследовательский центр “Саратовский научный центр Российской академии наук”

Автор, ответственный за переписку.
Email: guliy_olga@mail.ru

Институт биохимии и физиологии растений и микроорганизмов

Россия, 410049, Саратов

Б. Д. Зайцев

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: guliy_olga@mail.ru

Саратовский филиал 

Россия, 410019, Саратов

О. А. Караваева

Федеральный исследовательский центр “Саратовский научный центр Российской академии наук”

Email: guliy_olga@mail.ru

Институт биохимии и физиологии растений и микроорганизмов

Россия, 410049, Саратов

И. А. Бородина

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: guliy_olga@mail.ru

Саратовский филиал

Россия, 410019, Саратов

Список литературы

  1. Sulakvelidze A., Alavidze Z., Morris J.G. Jr. // Antimicrob. Agents Chemother. 2001. V. 45. № 3. P. 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001
  2. Kifelew L.G., Warner M.S., Morales S., Vaughan L., Woodman R., Fitridge R. et al. // BMC Microbiol. 2020. V. 20. № 1. P. 204. https://doi.org/10.1186/s12866-020-01891-8
  3. Macdonald K.E., Stacey H.J., Harkin G., Hall L.M.L, Young M.J., Jones J.D. // PLoS ONE. 2020. V. 15. e0243947. https://doi.org/10.1371/journal.pone.0243947
  4. Chanishvili N. // Adv. Virus Res. 2012. V. 83. P. 3–40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3
  5. Horcajada J.P., Montero M., Oliver A., Sorlí L., Luque S., Gómez-Zorrilla S. et al. // Clin. Microbiol. Rev. 2019. V. 32. № 4. e00031-19. https://doi.org/10.1128/CMR.00031-19
  6. Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. // Front. Pharmacol. 2014. V. 5. P. 105. https://doi.org/10.3389/fphar.2014.00105
  7. Pirnay J.P., Ferry T., Resch G. // FEMS Microbiol. Rev. 2022. V. 46. № 1. https://doi.org/10.1093/femsre/fuab040
  8. Botka T., Pantůček R., Mašlaňová I., Benešík M., Petráš P., Růžičková V. et al. // Sci. Rep. 2019. V. 9. P. 5475. https://doi.org/10.1038/s41598-019-41868-w
  9. Taati Moghadam M., Amirmozafari N., Shariati A., Hallajzadeh M., Mirkalantari S., Khoshbayan A., Masjedian Jazi F. // Infect. Drug. Resist. 2020. V. 13. P. 45–61. https://doi.org/10.2147/IDR.S234353
  10. Taati Moghadam M., Khoshbayan A., Chegini Z., Farahani I., Shariati A. // Drug. Des. Devel. Ther. 2020. V. 14. P. 1867–1883. https://doi.org/10.2147/DDDT.S251171
  11. Huon J.F., Montassier E., Leroy A.G., Grégoire M., Vibet M.A., Caillon J. et al. // mSystems. 2020. V. 5. № 6. e00542-20. https://doi.org/10.1128/mSystems.00542-20
  12. Shivaram K.B., Bhatt P., Verma M.S., Clase K., Simsek H. // Science of the Total Environment. 2023. V. 901. P. 165859. https://doi.org/10.1016/j.scitotenv.2023.165859
  13. Wang Z., Zhao X. // J. Appl. Microbiol. 2022. V. 133. № 4. P. 2137–2147. https://doi.org/10.1111/jam.15555
  14. Tang A.-Q., Yuan L., Chen C.-W., Zhang Y.-S., Yang Z.-Q. // Lwt. 2023. V. 182. P. 114774. https://doi.org/10.1016/j.lwt.2023.114774
  15. Carmody C.M., Goddard J.M., Nugen S.R. // Bioconjugate Chemistry. 2021. V. 32. № 3. P. 466–481. https://doi.org/10.9931021/acs. bioconjchem.1c00018
  16. Li T., Lu X.M., Zhang M.R., Hu K., Li Z. // Bioactive Materials. 2022. V. 11. P. 268–282. https://doi.org/10.1016/j.1130 bioactmat.2021.09.029
  17. Stone E., Campbell K., Grant I., McAulie O. // Viruses. 2019. V. 11. P. 567. https://doi.org/10.3390/v11060567
  18. Alaoui Mdarhri H., Benmessaoud R., Yacoubi H., Seffar L., Guennouni Assimi H., Hamam M. et al. // Antibiotics (Basel). 2022. V. 11. № 12. P. 1826. https://doi.org/10.3390/antibiotics11121826
  19. Soothill J.S. // Burns. 1994. V. 20. № 3. P. 209–211. https://doi.org/10.1016/0305-4179(94)90184-8
  20. Mendes J.J., Leandro C., Corte-Real S., Barbosa R., Cavaco-Silva P, Melo-Cristino J. et al. // Wound Repair Regen. 2013. V. 21. P. 595–603. https://doi.org/10.1111/wrr.12056
  21. dos Santos Ferreira N., Hayashi Sant’ Anna F., Massena Reis V., Ambrosini A., Gazolla Volpiano C., Rothballer M. et al. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. № 12. P. 6203–6212.22. https://doi.org/10.1099/ijsem.0.004517
  22. Guliy O.I., Zaitsev B.D., Borodina I.A., Shikhabudinov A.P., Teplykh A.A. // Appl. Biochem. Microbiol. 2017. V. 53. № 4. P. 464–469. https://doi.org/10.1134/S0003683817040068
  23. Sambrook J., Fritsch E.F., Maniatis T. Molecular Сloning: a Laboratory Manual. 2 Ed. N.Y.: Cold Spring. Maven Lab. Press, 1989. 1626 p.
  24. Hoogenboom H.R., Griffits A.D., Johnson K.S., Chiswell D.J., Hundson P., Winter G. // Nucleic Acids Res. 1991. V. 19. P. 4133–4137. https://doi.org/10.1093/nar/19.15.4133.
  25. Click E.M., Webster R.E. // J. Bacteriol. 1997. V. 179. №. 20. P. 6464–6471. https://doi.org/10.1128/jb.179.20.6464-6471.1997
  26. Click E.M., Webster R.E. // J. Bacteriol. 1998. V. 180. №. 7. P. 1723–1728. https://doi.org/10.1128/JB.180.7.1723-1728.1998
  27. Riechmann L., Holliger P. // Cell. 1997. V. 90. № 2. P. 351–360. https://doi.org/10.1016/s0092-8674(00)80342-6.
  28. Deng L.W., Malik P., Perham R.N. // Virology. 1999. V. 253. P. 271–277. https://doi.org/10.1006/viro.1998.9509
  29. Branston S.D., Stanley E.C., Ward J.M., Keshavarz-Moore E. // Biotechnol. Bioproc. Eng. 2013. V. 18. P. 560–566. https://doi.org/10.1007/s12257-012-0776-9
  30. Moghimian P., Srot V., Pichon B.P., Facey S.J., van Aken P.A. // JBNB. 2016. V. 7. № 2. P. 72–77. https://doi.org/10.4236/jbnb.2016.72009
  31. Salivar W.O., Tzagoloff H., Pratt D. // Virology. 1964. V. 24. P. 359–371. https://doi.org/10.1016/0042-6822(64)90173-4
  32. Seo H., Cho S., Vo T.T.B., Lee A., Cho S., Kang S. et al. // Microbiol Spectr. 2023. V. 11. e01446-23. https://doi.org/10.1128/spectrum.01446-23
  33. Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228–257. https://doi.org/10.1016/0076-6879(93)17065-d
  34. Zaitsev B.D., Borodina I.A., Teplykh A.A. // Ultrasonics. 2022. V. 126. P. 106814. https://doi.org/10.1016/j.ultras.2022.106814
  35. Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik G.I. // Pol J Microbiol. 2010. V. 59. № 3. P. 145–155.
  36. Fraser J.S., Maxwell K.L., Davidson A.R. // J. Mol. Biol. 2006. V. 359. P. 496–507. https://doi.org/10.1016/j.jmb.2006.03.043
  37. Fraser J.S., Maxwell K.L., Davidson A.R. // Curr. Opin. Microbiol. 2007. V. 10. P. 382–387. https://doi.org/10.1016/j.mib.2007.05.018
  38. Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4
  39. Defilippis V.R., Villarreal L.P. // Introduction to the Evolutionary Ecology of Viruses. Viral Ecology. 2000. Р. 125–208. https://doi.org/10.1016/B978-012362675-2/50005-7
  40. Strathdee S.A., Hatfull G.F., Mutalik V.K., Schooley R.T. // Cell. 2023. V. 186. № 1. P. 17–31. https://doi.org/10.1016/j.cell.2022.11.017
  41. Grabowski Ł., Łepek K., Stasiłojć M., Kosznik-Kwaśnicka K., Zdrojewska K., Maciąg-Dorszyńska M. et al. // Microbiol Res. 2021. V. 248. P. 126746. https://doi.org/10.1016/j.micres.2021.126746.
  42. Suh G.A., Patel R. // Clin. Microbiol. Infect. 2023. V. 29. № 6. P. 710-713. https://doi.org/10.1016/j.cmi.2023.02.006.
  43. Daubie V., Chalhoub H., Blasdel B., Dahma H., Merabishvili M., Glonti T. et al. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1000721. https://doi.org/10.3389/fcimb.2022.1000721
  44. Patpatia S., Schaedig E., Dirks A., Paasonen L., Skurnik M., Kiljunen S. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1032052. https://doi.org/10.3389/fcimb.2022.1032052
  45. Perlemoine P., Marcoux P.R., Picard E., Hadji E., Zelsmann M., Mugnier G. et al. // PLoS ONE 2021. V. 16. № 3. e0248917. https://doi.org/10.1371/journal.pone.0248917

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схематическое изображение компактного акустического анализатора, совмещенного с персональным компьютером (а); схема акустического датчика жидкости на основе резонатора с поперечным электрическим полем (б).

Скачать (226KB)
3. Рис. 2. Общая схема эксперимента.

Скачать (238KB)
4. Рис. 3. Частотные зависимости модуля электрического импеданса акустического анализатора до, кривая 1, и после, кривая 2, добавления бактериофага M13K07 к клеткам E. сoli при различных температурах воздействия на микробные клетки: 30 (а); 50 (б); 100°C (в).

Скачать (190KB)
5. Рис. 4. Зависимость изменения модуля электрического импеданса (ΔZ) от температуры воздействия на суспензию микробных клеток E. coli на частоте 6.6 МГц.

Скачать (55KB)
6. Рис. 5. Частотные зависимости модуля электрического импеданса акустического анализатора с суспензией микробных клеток Sp 245 до (кривая 1) и после (кривая 2) добавления бактериофага M13K07.

Скачать (67KB)

© Российская академия наук, 2025