Formation of Various Antimicrobial Peptide Emericellipsin Isoforms in Emericellopsis alkalina under Different Cultivation Conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A microbiological screening of the target component of emericellipsin A of the Emericellopsis alkalina E101 strain was carried out in various biotechnological systems at various pH. The content of emericellipsin A was quantified under these conditions.It has been established that the new approved membrane-liquid cultivation method at pH 10 contributes to an increase in the yield of the main component of emericellipsin A. It was shown that the new method of cultivating the strain E. alkalina E101 also promotes the synthesis of various isoforms of the main component of emericellipsin A. Some comparative analysis of them was carried out.

Sobre autores

A. Kuvarina

Gause Institute New Antibiotics

Autor responsável pela correspondência
Email: nastena.lysenko@mail.ru
Russia, 119021, Moscow

M. Sukonnikov

Gause Institute New Antibiotics

Email: sadykova_09@mail.ru
Russia, 119021, Moscow

E. Rogozhin

Gause Institute New Antibiotics; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

Email: sadykova_09@mail.ru
Russia, 119021, Moscow; Russia, 117997, Moscow

M. Serebryakova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: sadykova_09@mail.ru
Russia, 119234, Moscow

A. Timofeeva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: sadykova_09@mail.ru
Russia, 119234, Moscow

M. Georgieva

Gause Institute New Antibiotics; Lomonosov Moscow State University

Email: sadykova_09@mail.ru
Russia, 119021, Moscow; Russia, 119234, Moscow

V. Sadykova

Gause Institute New Antibiotics

Autor responsável pela correspondência
Email: sadykova_09@mail.ru
Russia, 119021, Moscow

Bibliografia

  1. Lau J.L., Dunn M.K. // Bioorg.Med. Chem. 2018. V. 26. № 10. P. 2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052
  2. Casagrande N., Borghese C., Gabbatore L., Morbiato L., De Zotti M., Aldinucci D. // Int. J. Mol. Sci. 2021. V. 22. № 16. P. 1–19. https://doi.org/10.3390/ijms22168362
  3. Chen C.H., Lu T.K. // Antibiotics. 2020. V. 9. № 24. P. 1–20. https://doi.org/10.3390/antibiotics9010024
  4. Bin H.A., Jiang X., Bergen P.J., Zhu Y. // Int. J. Mol. Sci. 2021. V. 22. № 11691. P. 1–56. https://doi.org/10.3390/ijms222111691
  5. Aldholmi M., Marchand P., Ourliac–Garnier I., Le Pape P., Ganesan A. // Pharmaceuticals. 2019. V. 12. № 4. P. 1–21. https://doi.org/10.3390/ph12040182
  6. Egorova–Zachernyuk T.A., Shvets V., Versluis K., Heerma W., Creemers A.F.L., Nieuwenhuis S.A.M., Lugtenburg J., Raap J. // J. Pept. Sci. 1996. V. 2. P. 341–350. https://doi.org/10.1002/psc.72
  7. Дьяченко И.А., Мурашев А.Н., Овчинникова Т.В. // Токсикологический вестник. 2008. № 3. С. 35–38.
  8. Otto A., Laub A., Porzel A., Schmidt J., Wessjohann L., Westermann B., Arnold N. // Eur. J. Org. Chem. 2015. V. 34. P. 7449–7459. https://doi.org/10.1002/ejoc.201501124
  9. Sadykova V.S., Gavryushina I.A., Kuvarina A.E., Markelova N.N., Sedykh N.G., Georgieva M.L., Barashkova A.C., Rogozhin E.A. // Appl. Biochem. Microbiol. 2020. V. 56. № 3. P. 292–297. https://doi.org/10.1134/S000368382003010
  10. Kuvarina A.E., Gavryushina I.A., Kulko A.B., Ivanov I.A., Rogozhin E.A., Georgieva M.L., Sadykova V.S. // J. Fungi. 2021. V. 7. № 153. P. 1–19. https://doi.org/10.3390/jof7020153
  11. Hao X., Li Sh., Ni J., Wang G., Li F., Li Q., Chen Sh., Shu J., Gan M. //J. Nat. Prod. 2021. V. 84. № 11. P. 2990–3000. https://doi.org/10.1021/acs.jnatprod.1c00834
  12. Zhang S.-H., Zhao X., Xu R., Yang Y., Tang J., Yue X.-L., Wang Y.-T., Tan X.-Y., Zhang G.-G., Li C.-W. // Chem. Biodivers. 2022. V. 19. № e202200627. P. 1–26. https://doi.org/10.1002/cbdv.202200627
  13. Grum-Grzhimaylo A.A., Georgieva M.L., Debets A.J.M., Bilanenko E.N. // IMA Fungus. 2013. V. 4. № 2. P. 213–228. https://doi.org/10.5598/imafungus.2013.04.02.07
  14. Kuvarina A.E., Gavryushina I.A., Sykonnikov M.A., Efimenko T.A., Markelova N.N., Bilanenko E.N. et al. // Molecules. 2022. V. 27. № 1736. P. 1–16. https://doi.org/10.3390/molecules27051736
  15. Baranova A.A., Georgieva M.L., Bilanenko E.N., Andreev Y.A., Rogozhin E.A., Sadykova V.S. // Appl. Biochem. Microbiol. 2017. V. 53. № 6. P. 703–710. https://doi.org/10.1134/S0003683817060035
  16. Galloway W.R.J.D., Bender A., Welch M., Spring D.R. // Chem. Commun. 2009. P. 2446–2462. https://doi.org/10.1039/b816852k

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (160KB)
3.

Baixar (79KB)
4.

Baixar (317KB)
5.

Baixar (267KB)
6.

Baixar (60KB)

Declaração de direitos autorais © А.Е. Куварина, М.А. Суконников, Е.А. Рогожин, М.В. Серебрякова, А.В. Тимофеева, М.Л. Георгиева, В.С. Садыкова, 2023