Biosynthesis of suberiс acid from glucose through the inverted fatty acid β-oxidation by recombinant Escherichia coli strains

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using directly engineered derivatives of previously constructed adipate-producing Escherichia coli strains MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, ∆fadE, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fabI, PL-SDj10-paaJ, aceBAK, glcB и MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fadE, PL-SDj10-paaJ, aceBAK, glcB the feasibility of suberic acid biosynthesis from glucose by this bacterium resulting from the reversal of the native fatty acid β-oxidation pathway was demonstrated. The condensation of acetyl-CoA with succinyl-CoA and adipyl-CoA was ensured in recombinants by 3-oxoadipyl-CoA thiolase PaaJ, whereas the putative acetyl-CoA C-acetyltransferase YqeF was unable to catalyse the respective reactions. The biosynthesis of ~60 μM suberic acid was achieved upon significant enhancement in the strains of the expression of the bifunctional (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA reductase gene, fadB. Subsequent inactivation of succinate dehydrogenase in the strains increased the intracellular availability of succinyl-CoA for the initiation of the first round of cycle reversal and favored an increase in the accumulation of the target compound by the recombinants to ~75 μM. The results provide a framework for the development of highly efficient producing strains for bio-based production of suberic acid from renewable raw materials.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Gulevich

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: andrey.gulevich@gmail.com
Ресей, Moscow, 117312

A. Skorokhodova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: andrey.gulevich@gmail.com
Ресей, Moscow, 117312

V. Debabov

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: andrey.gulevich@gmail.com
Ресей, Moscow, 117312

Әдебиет тізімі

  1. Tarasava K., Lee S.H., Chen J., Köpke M., Jewett M.C., Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2022. V. 49. № 2. kuac003. https://doi.org/10.1093/jimb/kuac003
  2. Fujita Y., Matsuoka H., Hirooka K. // Mol. Microbiol. 2007. V. 66. № 4. P. 829–839.
  3. Kim S., Cheong S., Chou A., Gonzalez R. // Curr. Opin. Biotechnol. 2016. V. 42. P.206–215. https://doi.org/10.1016/j.copbio.2016.07.004
  4. Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. // Nature. 2011. V. 476. P. 355–359. https://doi.org/10.1038/nature10333
  5. Gulevich A.Y., Skorokhodova A.Y., Sukhozhenko A.V., Shakulov R.S., Debabov V.G. // Biotechnol. Lett. 2012. V. 34. P. 463–469. https://doi.org/10.1007/s10529-011-0797-z
  6. Mehrer C.R., Incha M.R., Politz M.C., Pfleger B.F. // Metab. Eng. 2018. V. 48. P. 63–71. https://doi.org/10.1016/j.ymben.2018.05.011
  7. Chen J., Gonzalez R. // Metab. Eng. 2023. V. 79. P. 173–181. https://doi.org/10.1016/j.ymben.2023.07.006
  8. Kim S., Clomburg J.M., Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2015. V. 42. P. 465–75. https://doi.org/10.1007/s10295-015-1589-6
  9. Kim S., Cheong S., Gonzalez R. // Metab. Eng. 2016. V. 36. P. 90–98. https://doi.org/10.1016/j.ymben.2016.03.005
  10. Gulevich A.Y., Skorokhodova A.Y., Debabov V.G. // Biomolecules. 2024. V. 14. 449. http://doi.org/10.3390/biom14040449
  11. Cheong S., Clomburg J.M., Gonzalez R. // Nat. Biotechnol. V. 34. № 5. P. 556–561. https://doi.org/10.1038/nbt.3505
  12. Lang M., Li H. // ChemSusChem. 2022. V. 15. № 1. e202101531. https://doi.org/10.1002/cssc.202101531
  13. Liao Z., Yeoh Y.K., Parumasivam T., Koh W.Y., Alrosan M., Alu’datt M.H., Tan T.C. // RSC Adv. 2024. V. 14. № 24. P. 17008–17021. https://doi.org/10.1039/d4ra02598a
  14. Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 59. № 3. С. 235–243.
  15. Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 60. № 3. С. 28–35.
  16. Sambrook J., Fritsch E., Maniatis T. // Molecular Cloning: a Laboratory Manual, 2 nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
  17. Скороходова А.Ю., Стасенко А.А., Гулевич А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2018. Т. 54. № 3. С. 244–252.
  18. Skorokhodova A.Y., Gulevich A.Y., Debabov V.G. // Biotechnol. Rep. 2022. V. 33. e00703. http://doi.org/10.1016/j.btre.2022.e00703
  19. Datsenko K.A., Wanner B.L. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 12. Р. 6640–6645.
  20. Каташкина Ж.И., Скороходова А.Ю., Зименков Д.В., Гулевич А.Ю., Минаева Н.И., Дорошенко В.Г., Бирюкова И.В., Машко С.В. // Молекулярная биология. 2005. Т. 39. № 5. С. 823–831.
  21. Гулевич А.Ю., Скороходова А.Ю., Ермишев В.Ю., Крылов А.А., Минаева Н.И., Полонская З.М. и др. // Молекулярная биология. 2009. Т. 43. № 3. С. 547–557.
  22. Clark D.P., Cronan J.E. // EcoSal Plus. 2005. V. 1. 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4.
  23. Binstock J.F., Schulz H. // Methods. Enzymol. 1981. V. 71. P. 403–411. https://doi.org/10.1016/0076-6879(81)71051-6
  24. Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14390–14395. https://doi.org/10.1073/pnas.1005399107
  25. Deuschle U., Kammerer W., Gentz R., Bujard H. // EMBO J. 1986. V. 5. P. 2987–2994. https://doi.org/10.1002/j.1460-2075.1986.tb04596.x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025