New Agronomically Valuable Strains of the Genus Streptomyces and Their Biochemical Characteristics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Organic farming is a global trend that increases the demand for biological preparations for use in agricultural production. The paper characterizes new actinomycete isolates from soil samples taken in various agrocenoses of the Vyatka-Kama Urals. As a result of preliminary testing (about 350 strains), strains 8Al3, N27-25 and P15-2 were isolated on the basis of antifungal activity. The cultures were identified by 16S rRNA as bacteria of the genus Streptomyces. The active substance with antifungal effect — scopafungin was identified using HPLC-MS/MS. Along with the inhibitory effect on phytopathogenic fungi, these strains produce auxins in the presence of 100 mcg/ml of L-tryptophan (17.4–20.8 mcg/ml), have cellulolytic activity and have a stimulating effect on germination and accumulation of dry biomass by wheat, clover and mustard seedlings. Possessing a complex of beneficial properties for plants, Streptomyces strains 8Al3, N27-25 and P15-2 can be used as candidates for the creation of biological preparations with fungicidal and phytostimulating effects.

Full Text

Restricted Access

About the authors

I. G. Shirokikh

Federal Agricultural Research Center of the North-East named N.V. Rudnitsky; Vyatka State University

Author for correspondence.
Email: irgenal@mail.ru
Russian Federation, Kirov, 610007; Kirov, 610000

N. A. Bokov

Federal Agricultural Research Center of the North-East named N.V. Rudnitsky; Vyatka State University

Email: irgenal@mail.ru
Russian Federation, Kirov, 610007; Kirov, 610000

A. A. Alalykin

Vyatka State University

Email: irgenal@mail.ru
Russian Federation, Kirov, 610000

A. A. Shirokikh

Federal Agricultural Research Center of the North-East named N.V. Rudnitsky; Vyatka State University

Email: irgenal@mail.ru
Russian Federation, Kirov, 610007; Kirov, 610000

References

  1. The World of Organic Agriculture. Statistics and Emerging Trends 2024. /Eds. H. Willer, J. Trávníček, S. Schlatter. Research Institute of Organic Agriculture FiBL, Frick, and Bonn. IFOAM — Organics International, 2024. 352 p.
  2. Pérez-Montaño F., Alías-Villegas C., Bellogín R.A., del Cerro P., Espuny M.R., Jiménez-Guerrero I. et al. // Microbiol. Res. 2014. V. 169. P. 325–336. https://doi.org/10.1016/j.micres.2013.09.011
  3. Basu A., Prasad P., Das S.N., Kalam S., Sayyed R.Z., Reddy M.S., El Enshasy H. // Sustainability. 2021. V. 13. P. 1–20. https://doi.org/10.3390/su13031140
  4. Seipke R.F., Kaltenpoth M., Hutchings M.I.//FEMS Microbiol. Rev. 2012. V. 36. P. 862–876. https://doi.org/10.1111/j.1574-6976.2011.00313.x
  5. Bonaldi M., Chen X., Kunova A., Pizzatti, C., Saracchi M., Cortesi P.// Front. Microbiol. 2015 V. 6. P. 25. https://doi.org/10.3389/fmicb.2015.00025
  6. Javed Z., Tripathi G. D., Mishra M., Dashora K.// Biocatal. Agric. Biotechnol. 2021. V. 31. Р. 101893. https://doi.org/10.1016/j.bcab.2020.101893
  7. Павлюшин В.А., Новикова И.И., Бойкова И.В. // Сельскохозяйственная биология. 2020. Т. 55. №. 3. С. 421–438. https://doi.org/10.15389/agrobiology.2020.3.421rus
  8. Cordovez V., Carrion V. J., Etalo D.W., Mumm R., Zhu H., van Wezel, G.P., Raaijmakers J.M. // Front. Microbiol. 2015. V. 6. P. 1081. https://doi.org/10.3389/fmicb.2015.01081
  9. Viaene T., Langendries S., Beirinckx S., Maes M., Goormachtig S. // FEMS Microbiol. Ecol. 2016. V. 92. № 8. https://doi.org/10.1093/femsec/fiw119
  10. Basic Biology and Applications of Actinobacteria. / Ed. Enany S. (Ed.). IntechOpen, 2018. P. 99–122.
  11. Vurukonda S.S. K.P., Giovanardi D., Stefani E. // Int. J. Mol. Sci. 2018. V. 19. №. 4. P. 952. https://doi.org/10.3390/ijms19040952
  12. Pacios-Michelena S., Aguilar Gonzalez C.N., Alvarez-Perez O.B., Rodriguez-Herrera R., Chávez-González M., Arredondo Valdes R., Ilyina A. // Front. Sustain. Food Syst. 2021. V. 5. P. 696518. https://doi.org/10.3389/fsufs.2021.696518
  13. Rey T., Dumas B. // Trends in Plant Science. 2017. V. 22. №. 1. P. 30–37. https://doi.org/10.1016/j.tplants.2016.10.008
  14. Suprapta D.N. // J. ISSAAS. 2012. V. 18. №. 2. P. 1–8.
  15. Широких И.Г., Бакулина А.В., Назарова Я.И., Широких А.А., Козлова Л.М. // Микология и фитопатология. 2020. Т. 54. № 1. С. 59–66. https://doi.org/10.31857/S0026364820010080
  16. Komaki H., Tamura T. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 1099–1105. https://doi.org/10.1099/ijsem.0.003882
  17. Shirling E.B., Gottlieb D. // Int. J. Syst. Bacteriol. 1966. V. 16. P. 313–340. https://doi.org/10.1099/00207713-16-3-313
  18. Tamura K., Stecher G., Kumar S. // Mol. Biol. Evol. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  19. Гаузе Г.Ф., Преображенская Т.П., Свешникова М.А., Терехова Л.П., Максимова Т.С. Определитель актиномицетов. М.: Наука, 1983. 245 с.
  20. Ryan M.C., Stucky M., Wakefield C., Melott J.M., Akbani R., Weinstein J.N., Broom B.M. // F1000Res. (ISCB Comm J). 2019. V. 8. P. 1750. https://doi.org/10.12688/f1000research.20590.2
  21. Ghose T.K. // Pure & Appl. Chem. 1987. V. 59. № 2. P. 257–268.
  22. Song X., Yuan G., Li P., Cao S. // Molecules. 2019. V. 24. P. 3913. https://doi.org/10.3390/molecules24213913
  23. Wang Z., Gao C., Yang J., Du R., Zeng F., Bing H., Liu C. // Front. Microbiol. 2023. V. 14. P. 1243610. https://doi.org/10.3389/fmicb.2023.1243610
  24. Kim H.Y., Kim J.D., Hong J.S., Ham J.H., Kim B.S. // J. Basic. Microbiol. 2013. V. 53. P. 581–589. https://doi.org/10.1002/jobm.201200045
  25. Reusser F. // Biochem. Pharmacol. 1972. V. 21. P. 1031–1038. https://doi.org/10.1016/0006-2952(72)90408-x
  26. Mogi T., Matsushita K., Murase Y., Kawahara K., Miyoshi H., Ui H. et al. // FEMS Microbiol. Lett. 2009. V. 291. P. 157–161. https://doi.org/10.1111/j.1574-6968.2008.01451.x
  27. Nakayama K., Yamaguchi T., Doi T., Usuki Y., Taniguchi M., Tanaka T. // J. Biosci. Bioeng. 2002. V. 94. P. 207–211. https://doi.org/10.1263/jbb.94.207
  28. Fei P., Yang X., Lu-jie C., Hong J., Yun-yang L. // Natural Product Research & Development. 2011. V. 23. № 5. P. 809–814.
  29. Fei P., Wenzhou Z., Yangjun L., Yuee Z., Ping L., Yiwen Z., Linlin C. // Genome-based Analysis for the Biosynthetic Potential of Streptomyces sp. FIM 95-F1 Producing Antifungal Antibiotic Scopafungin. 2023. https://doi.org/10.21203/rs.3.rs-3052084/v1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A heat map reflecting the differences in the size of the zones of inhibition of fungal test cultures by streptomyces strains.

Download (205KB)
3. Fig. 2. Mass spectrum of unfragmented ions in a sample obtained from the QL of reference strain A4 with a retention time of 1.0 min.

Download (120KB)
4. 3. Chromatogram (a) and mass spectrum (b) of the sample obtained from the QL strain 8Al3.

Download (195KB)
5. 4. The phylogenetic position of the studied streptomyces strains and scopafungin—producing strains [N], based on the analysis of the nucleotide sequences of the 16S rRNA gene fragment.

Download (348KB)

Copyright (c) 2025 Russian Academy of Sciences