Reactivity of octa(2,6-fluorophenyl)porphyrazine in acid-base interaction with nitrogen organic bases

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An interaction between octa(2,6-fluorophenyl)porphyrazine and pyridine, 2-methylpyridine, morpholine, piperidine, n-buthylamine, tert-buthylamine, diethylamine and triethylamine in benzene medium. Acid-base reaction between macroheterocycle and piperidine or n-buthylamine is a slow process resulting in forming the kinetically stable complexes with the proton transfer. The structures of these complexes are optimized using CAM-B3LYP/cc-pVTZ method. The changes in reactivity of octa(2,6-fluorophenyl)porphyrazine are analyzed as a function of spatial structure and proton-accepting ability of nitrogen base.

Texto integral

Acesso é fechado

Sobre autores

O. Petrov

Ivanovo State University of Chemistry and Technology

Autor responsável pela correspondência
Email: poa@isuct.ru
ORCID ID: 0000-0003-3424-7135
Rússia, prosp. Sheremetevskii, 7, Ivanovo, 153000

G. Gamov

Ivanovo State University of Chemistry and Technology

Email: poa@isuct.ru
ORCID ID: 0000-0002-5240-212X
Rússia, prosp. Sheremetevskii, 7, Ivanovo, 153000

N. Chizhova

Krestov Institute of Solution Chemistry of Russian Academy of Sciences

Email: poa@isuct.ru
ORCID ID: 0000-0001-5387-5933
Rússia, ul. Akademicheskaya, 1, Ivanovo, 153045

N. Mamardashvili

Krestov Institute of Solution Chemistry of Russian Academy of Sciences

Email: poa@isuct.ru
Rússia, ul. Akademicheskaya, 1, Ivanovo, 153045

Bibliografia

  1. Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1–73. doi: 10.1016/j.ccr.2018.01.015.
  2. Шапошников Г.П., Кулинич В.П., Майзлиш В.Е. Модифицированные фталоцианины и их структурные аналоги. М.: Красанд. 2012, 480.
  3. Lupton J.M. Appl. Phys. Lett. 2008, 81, 2478–2492. doi: 10.1013/1.1509115.
  4. Петров О.А. ЖФХ. 2021, 95, 549-557. [Petrov O.A. Russ. J. Phys. Chem. A. 2021, 95, 696–704.] doi: 10.1134/S003602442104021Х
  5. Петров О.А., Осипова Г.В., Майзлиш В.Е., Аганичева К.А., Чуркина М.М. ЖОрХ. 2021, 57, 1281–1289. [Petrov O.A., Osipova G.V., Mayzlish V., Churkina M.M. Russ. J. Org. Chem. 2021, 57, 1428–1434.] doi: 10.1134/S1070363218040187
  6. Stuzhin P.A., Khelevina O.G., Berezin B.D. Phthalocyanines: Properties and Applications. Eds. C.C. Lesnoff, A.B.P. Lever. New York: VCH Publ. 1996, 4, 19–47
  7. Stuzhin P.A. J. Porphyrins Phthalocyanines. 2003, 7, 813-832. doi: 10.1142/S1088424603001014
  8. Молекулярные взаимодействия. Ред. Г. Ратайчак, У. Орвилл-Томас. М.: Мир. 1984, 2, 598.
  9. Базилевский М.В., Венер М.В. Усп. хим. 2003, 72, 3–39 [Basilevsky M.V., Vener M.V. Usp. Khim. 2003, 72, 3–39.] doi: 10.1070/RC2003v072n01ABEH000774
  10. Березин Д.Б. Макроциклический эффект и структурная химия порфиринов. М. : Красанд. 2010, 424.
  11. Handbook of Chemistry and Physics. Ed. W.M. Haynes. New York: CHC. 2013, 2668.
  12. Anet F.A.L., Yavari I. J. Amer. Chem. Soc. 1977, 99, 2794–2796.
  13. Blackburne I.D., Katritzky A.R., Takeuchi Y. Accouts Chem. Res. 1975, 8, 300–306.
  14. Русанов А.И., Чижова Н.В., Лихонина А.Е., Мамардашвили Н. Ж. ЖНХ. 2023, 68, 1050–1058. [Rusanov A.I., Chizhova N. V., Lihonina A.E., Mamardashvili N. Zh. Russ. J. Inorg. Chem. 2023, 68, 1062–1073] doi: 10.31857/S0044457Х23600329
  15. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian09. Revision A. 02. Wallingsdorf C.T.: Gaussian Inc. 2016.
  16. Yanai T., Tew D.P., Handy N.C. Chem. Phys. Lett. 2004, 393, 51–57. doi: 10.1016/j.cplett.2004.06.011
  17. Kendall R.A., Dunning T. H., Harrison R.J. J. Chem. Phys. 1992, 96, 6796–6806. doi: 10.1063/1.462569

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. EAS of H2Pa(C6H3F2)8 in benzene (1) and piperidine (2) at 298 K

Baixar (63KB)
3. Fig. 2. Change in the ESP of H2Pa(C6H3F2)8 in the presence of piperidine for 54 min at 323 K and СоPip= 2.53 mol/l in benzene

Baixar (91KB)
4. Fig. 3. Change in the ESP of H2Pa(C6H3F2)8 in the presence of n-butylamine for 68 min at 323 K and СоBuNH2= 2.53 mol/l in benzene

Baixar (88KB)
5. Fig. 4. Dependence of lgCo/C on the reaction time of H2Pa(C6H3F2)8 with piperidine (1), n-butylamine (2) in benzene at 343K and СоPip = СоBuNH2= 3.80 mol/l

Baixar (52KB)
6. Fig. 5. Dependence of lgkH343 on lgCoB for the reaction of H2Pa(C6H3F2)8 with piperidine (1) and n-butylamine (2) at 343K

Baixar (59KB)
7. Fig. 6. Structures of H2Pa(C6H3F2)8 (a) and [HPa(C6H3F2)8 HB] with piperidine (b) and n-butylamine (c) optimized by the CAM-B3LYP method

Baixar (270KB)
8. Fig. 7. The structure of [Pa(C6H3F2)8]··· [HB]2 with piperidine (a) and n-butylamine (b) optimized by the CAM-B3LYP method

Baixar (280KB)
9. Scheme

Baixar (97KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024