Хлорные мембранные каналы и транспортеры – роль в формировании электрической активности пейсмекерного и рабочего миокарда

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Хлорид-анионы оказывают значительное влияние на электрофизиологические свойства возбудимых тканей, в том числе и миокардиальной ткани. Анионы хлора и трансмембранные хлорные токи (ICl) определяют конфигурацию потенциалов действия (ПД) в различных участках здорового сердца, а нарушение трансмембранного переноса хлора вызывает изменение нормальной электрической активности, что приводит к сердечным патологиям и аритмиям. На данный момент для нескольких типов макромолекул подтверждена хлорная проводимость и экспрессия в сердце, а также имеются сведения, указывающие на функциональную роль этих каналов в миокарде. К таким каналам относятся CFTR, ClC-2, CaCC (TMEM16) и VRAC (LRRC8x). Кроме того, значительный вклад в регуляцию внутриклеточной концентрации анионов хлора ([Cl]i) и, соответственно, равновесного потенциала для анионов хлора (ECl) вносят хлорные котранспортеры (КСС, NKCC) и хлор-бикарбонатные обменники. В данном обзоре рассмотрены механизмы, посредством которых хлорный трансмембранный транспорт влияет на биоэлектрическую активность кардиомиоцитов. Кроме того, в обзоре сделаны предположения о потенциальных функциях хлора и хлорных токов в специализированных участках сердца.

Полный текст

Доступ закрыт

Об авторах

Я. А. Воронина

Московский государственный университет имени М.В. Ломоносова; Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова Минздрава России

Автор, ответственный за переписку.
Email: voronina.yana.2014@post.bio.msu.ru

Кафедра физиологии человека и животных, биологический факультет; Научно-исследовательский институт экспериментальной кардиологии имени академика В.Н. Смирнова

Россия, Москва, 119234; Москва, 121552

А. М. Кархов

Московский государственный университет имени М.В. Ломоносова; Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова Минздрава России

Email: akarchoff@gmail.com

Кафедра физиологии человека и животных, биологический факультет; Научно-исследовательский институт экспериментальной кардиологии имени академика В.Н. Смирнова

Россия, Москва, 119234; Москва, 121552

В. С. Кузьмин

Московский государственный университет имени М.В. Ломоносова; Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова Минздрава России

Email: ku290381@mail.ru

Кафедра физиологии человека и животных, биологический факультет; Научно-исследовательский институт экспериментальной кардиологии имени академика В.Н. Смирнова

Россия, Москва, 119234; Москва, 121552

Список литературы

  1. Akita H., Yoshie S., Ishida T., Takeishi Y., Hazama A. Negative chronotropic and inotropic effects of lubiprostone on iPS cell-derived cardiomyocytes via activation of CFTR // BMC Complement Med. Ther. 2020. V. 20. № 1. P. 1–10. https://doi.org/10.1186/s12906-020-02923-6
  2. Alvarez B.V., Fujinaga J., Casey J.R. Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium // Circ. Res. 2001. V. 89. № 12. P. 1246–1253. https://doi.org/10.1161/hh2401.101907
  3. Andersen G.O., Oie E., Vinge L.E. et al. Increased expression and function of the myocardial Na-K-2Cl cotransporter in failing rat hearts // Basic. Res. Cardiol. 2006. V. 101. № 6. P. 471–478. https://doi.org/10.1007/s00395-006-0604-5
  4. Andersen G.O., Skomedal T., Enger M. et al. α1-AR-mediated activation of NKCC in rat cardiomyocytes involves ERK-dependent phosphorylation of the cotransporter // Am. J. Physiol. – Hear. Circ. Physiol. 2004. V. 286. № 55. P. 1354–1360. https://doi.org/10.1152/ajpheart.00549.2003
  5. Anfinogenova Y.J., Baskakov M.B., Kovalev I.V. et al. Cell-volume-dependent vascular smooth muscle contraction: Role of Na +, K+, 2Cl-cotransport, intracellular Cl – and L-type Ca2+ channels // Pflugers Arch. Eur. J. Physiol. 2004. V. 449. № 1. P. 42–55. https://doi.org/10.1007/s00424-004-1316-z
  6. Britton F.C., Hatton W.J., Rossow C.F. et al. Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues // Am. J. Physiol. – Hear. Circ. Physiol. 2000. V. 279. № 48. P. 2225–2233. https://doi.org/10.1152/ajpheart.2000.279.5.h2225
  7. Britton F.C., Wang G.L., Huang Z.M. et al. Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart // J. Biol. Chem. 2005. V. 280. № 27. P. 25871–25880. https://doi.org/10.1074/jbc.M502826200
  8. Brown H.F., Giles W., Noble S.J. Membrane currents underlying activity in frog sinus venosus // J. Physiol. 1977. V. 271. № 3. P. 783–816. https://doi.org/10.1113/jphysiol.1977.sp012026
  9. Chen H., Liu L.L., Ye L.L. et al. Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart // Circulation. 2004. V. 110. № 6. P. 700–704. https://doi.org/10.1161/01.CIR.0000138110.84758.BB
  10. Chiappe De Cingolani G., Morgan P., Mundiña-Weilenmann C. et al. Hyperactivity and altered mRNA isoform expression of the Cl-/HCO3- anion-exchanger in the hypertrophied myocardium // Cardiovasc, Res. 2001. V. 51, № 1. P. 71–79. https://doi.org/10.1016/S0008-6363(01)00276-0
  11. Cingolani H.E., Chiappe G.E., Ennis I.L. et al. Influence of Na+-Independent Cl--HCO3- Exchange on the Slow Force Response to Myocardial Stretch // Circ. Res. 2003. V. 93. № 11. P. 1082–1088. https://doi.org/10.1161/01.RES.0000102408.25664.01
  12. Cohn J.A., Nairn A.C., Marino C.R., Melhus O., Kole J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line // Proc. Natl. Acad. Sci. USA. 1992. V. 89. № 6. P. 2340–2344. https://doi.org/10.1073/pnas.89.6.2340
  13. Counillon L., Pouysségur J. The expanding family of eucaryotic Na+/H+ exchangers // J. of Biol. Chem. 2000. V. 275. № 1. P. 1–4. https://doi.org/10.1074/jbc.275.1.1
  14. Csanády L., Vergani P., Gadsby D.C. Structure, gating, and regulation of the CFTR anion channel // Physiol. Rev. 2019. V. 99. № 1. P. 707–738. https://doi.org/10.1152/physrev.00007.2018
  15. Cuppoletti J., Tewari K.P., Sherry A.M., Ferrante C.J., Malinowska D.H. Sites of protein kinase A activation of the human ClC-2 Cl- channel // J. Biol. Chem. 2004. V. 279. № 21. P. 21849–56. https://doi.org/10.1074/jbc.M312567200
  16. Duan D. Phenomics of cardiac chloride channels: The systematic study of chloride channel function in the heart // J. of Physiol. 2009. V. 587. P. 2163–2177. https://doi.org/10.1113/jphysiol.2008.165860
  17. Duan D., Hume J.R., Nattel S. Evidence that outwardly rectifying Cl– channels underlie volume- regulated Cl– currents in heart // Circ. Res. 1997. V. 80. № 1. P. 103–113. https://doi.org/10.1161/01.RES.80.1.103
  18. Duan D., Ye L., Britton F., Horowitz B., Hume J.R. A novel anionic inward rectifier in native cardiac myocytes. // Circ. Res. 2000. V. 86. № 4. P. 1–9. https://doi.org/10.1161/01.res.86.4.e63
  19. Duan D., Ye L., Britton F. et al. Purinoceptor-coupled Cl- channels in mouse heart: A novel, alternative pathway for CFTR regulation // J. Physiol. 1999. V. 521. № 1. P. 43–56. https://doi.org/10.1111/j.1469-7793.1999.00043.x
  20. Duan D.D. The ClC-3 chloride channels in cardiovascular disease // Acta Pharmacol. Sin. 2011. V. 32. № 6. P. 675–684. https://doi.org/10.1038/aps.2011.30
  21. Duan D.D. Phenomics of cardiac chloride channels // Compr. Physiol. 2013. V. 3. № 2. P. 667–692. https://doi.org/10.1113/jphysiol.2008.165860
  22. Duan D.Y., Liu L.L.H., Bozeat N. et al. Functional role of anion channels in cardiac diseases // Acta Pharm. Sinica. 2005. V. 26. № 3. P. 265–287. https://doi.org/10.1111/j.1745-7254.2005.00061.x
  23. Duran C., Thompson C.H., Xiao Q., Hartzell H.C. Chloride channels: Often enigmatic, rarely predictable // Annu. Rev. Physiol. 2009. V. 72. P. 95–121. https://doi.org/10.1146/annurev-physiol-021909-135811
  24. Egorov Y.V., Lang D., Tyan L. et al. Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis // J. Am. Heart Assoc. 2019. V. 8. № 20. P. 1–41. https://doi.org/10.1161/JAHA.119.012748
  25. Ennis I.L., Alvarez B.V., Camilión De Hurtado M.C., Cingolani H.E. Enalapril induces regression of cardiac hypertrophy and normalization of pH(i) regulatory mechanisms // Hypertension. 1998. V. 31. № 4. P. 961–967. https://doi.org/10.1161/01.HYP.31.4.961
  26. Frace A.M., Maruoka F., Noma A. Control of the hyperpolarization‐activated cation current by external anions in rabbit sino‐atrial node cells. // J. Physiol. 1992. V. 453. № 1. P. 307–318. https://doi.org/10.1113/jphysiol.1992.sp019230
  27. Fritsch J., Edelman A. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation // J. Physiol. 1996. V. 490. № 1. P. 115–128. https://doi.org/10.1113/jphysiol.1996.sp021130
  28. Fülöp L., Fiák E., Szentandrássy N. et al. The role of transmembrane chloride current in afterdepolarisations in canine ventricular cardiomyocytes // Gen. Physiol. Biophys. 2003. V. 22. № 3. P. 341–353.
  29. Gao Z., Sun H.Y., Lau C.P., Chin-Wan Fung P., Li G.R. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes // J Mol. Cell Cardiol. 2007. V. 42. № 1. P. 98–105. https://doi.org/10.1016/j.yjmcc.2006.10.002
  30. Han Y.E., Kwon J., Won J. et al. Tweety-homolog (Ttyh) family encodes the pore-forming subunits of the swelling-dependent volume-regulated anion channel (VRACswell) in the brain // Exp. Neurobiol. 2019. V. 28. № 2. P. 183–215. https://doi.org/10.5607/en.2019.28.2.183
  31. Hansen T.H., Yan Y., Ahlberg G. et al. A Novel Loss-of-Function Variant in the Chloride Ion Channel Gene Clcn2 Associates with Atrial Fibrillation // Sci. Rep. 2020. V. 10. № 1. P. 1–10. https://doi.org/10.1038/s41598-020-58475-9
  32. Hart P., Warth J.D., Levesque P.C. et al. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 13. P. 6343–6348. https://doi.org/10.1073/pnas.93.13.6343
  33. Hegyi B., Horváth B., Váczi K. et al. Ca2+–activated Cl− current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization // J. Mol. Cell. Cardiol. 2017. V. 109. P. 27–37. https://doi.org/10.1016/j.yjmcc.2017.06.014
  34. Hiraoka M., Kawano S., Hirano Y., Furukawa T. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias // Cardiovasc. Res. 1998. V. 40. № 1. P. 23–33. https://doi.org/10.1016/S0008-6363(98)00173-4
  35. Hirayama Y., Kuruma A., Hiraoka M., Kawano S. Calcium-activated Cl- current is enhanced by acidosis and contributes to the shortening of action potential duration in rabbit ventricular myocytes // Jpn. J. Physiol. 2002. V. 52. № 3. P. 293–300. https://doi.org/10.2170/jjphysiol.52.293
  36. Horváth B., Váczi K., Hegyi B. et al. Sarcolemmal Ca2+-entry through L-type Ca2+ channels controls the profile of Ca2+-activated Cl– current in canine ventricular myocytes // J. Mol. Cell Cardiol. 2016. V. 97. P. 125–139. https://doi.org/10.1016/j.yjmcc.2016.05.006
  37. Huang Z.M., Prasad C., Britton F.C. et al. Functional role of CLC-2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells // J. Mol. Cell Cardiol. 2009. V. 47. № 1. P. 121–132. https://doi.org/10.1016/j.yjmcc.2009.04.008
  38. Hume J.R., Duan D., Collier M.L., Yamazaki J., Horowitz B. Anion transport in heart // Physiol. Rev. 2000. V. 80. № 1. P. 31–81. https://doi.org/10.1152/physrev.2000.80.1.31
  39. Hume J.R., Hart P., Levesque P.C. et al. Molecular physiology of CFTR Cl– channels in heart // Jpn. J. Physiol. 1994. V. 44. № 2.
  40. Hutter O.F., Noble D. Anion conductance of cardiac muscle // J. Physiol. 1961. V. 157. № 2. P. 335–350. https://doi.org/10.1113/jphysiol.1961.sp006726
  41. James A.F. Enigmatic variations: The many facets of CFTR function in the heart // Acta Physiol. 2020. V. 230. № 1. P. 5–6. https://doi.org/10.1111/apha.13525
  42. January C.T., Fozzard H.A. Delayed afterdepolarizations in heart muscle: Mechanisms and relevance // Pharmacol. Rev. 1988. V. 40. № 3.
  43. Jentsch T.J., Pusch M. CLC chloride channels and transporters: Structure, function, physiology, and disease // Physiol. Rev. 2018. V. 98. № 3. P. 1493–1590. https://doi.org/10.1152/physrev.00047.2017
  44. Jeulin C., Guadagnini R., Marano F. Oxidant stress stimulates Ca2+-activated chloride channels in the apical activated membrane of cultured nonciliated human nasal epithelial cells // Am. J. Physiol. – Lung Cell Mol. Physiol. 2005. V. 289. № 33. P. 636–646. https://doi.org/10.1152/ajplung.00351.2004
  45. Jiang K., Jiao S., Vitko M. et al. The impact of Cystic Fibrosis Transmembrane Regulator Disruption on cardiac function and stress response // J. Cyst. Fibros. 2016. V. 15. № 1. P. 34–42. https://doi.org/10.1016/j.jcf.2015.06.003
  46. Jin X., Shah S., Liu Y. et al. Activation of the Cl– Channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor // Sci. Signal. 2013. V. 6. № 290. https://doi.org/10.1126/scisignal.2004184
  47. Kim H.J., Myers R., Sihn C.R. et al. Slc26a6 functions as an electrogenic Cl/HCO3 exchanger in cardiac myocytes // Cardiovasc. Res. 2013. V. 100. № 3. P. 383–391. https://doi.org/10.1093/cvr/cvt195
  48. Komukai K., Brette F., Orchard C.H. Electrophysiological response of rat atrial myocytes to acidosis // Am. J. Physiol. – Hear. Circ. Physiol. 2002. V. 283. № 52–2. P. 715–724. https://doi.org/10.1152/ajpheart.01000.2001
  49. Kunzelmann K. CFTR: Interacting with everything? // News Physiol. Sci. 2001. V. 16. № 4. P. 167–170. https://doi.org/10.1152/physiologyonline.2001.16.4.167
  50. Kuzumoto M., Takeuchi A., Nakai H. et al. Simulation analysis of intracellular Na+ and Cl–homeostasis during β1-adrenergic stimulation of cardiac myocyte // Prog. Biophys. Mol. Biol. 2008. V. 96. № 1–3. P. 171–186. https://doi.org/10.1016/j.pbiomolbio.2007.07.005
  51. Lader A.S., Wang Y., Jackson G.R., Borkan S.C., Cantiello H.F. cAMP-activated anion conductance is associated with expression of CFTR in neonatal mouse cardiac myocytes // Am. J. Physiol. – Cell Physiol. 2000. V. 278. № 47–2. P. 436–440. https://doi.org/10.1152/ajpcell.2000.278.2.c436
  52. Lai Z.F., Nishi K. Intracellular chloride activity increases in guinea pig ventricular muscle during simulated ischemia // Am. J. Physiol. – Hear. Circ. Physiol. 1998. V. 44. № 5. P. 1613–1619. https://doi.org/10.1152/ajpheart.1998.275.5.h1613
  53. Leem C.H., Lagadic-Gossmann D., Vaughan-Jones R.D. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte // J. Physiol. 1999. V. 517. № 1. P. 159–180. https://doi.org/10.1111/j.1469-7793.1999.0159z.x
  54. Li B., Hoel C.M., Brohawn S.G. Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization // Nat. Commun. 2021. V. 12. № 1. P. 1–9. https://doi.org/10.1038/s41467-021-27283-8
  55. Li C., Huang D., Tang J. et al. ClC-3 chloride channel is involved in isoprenaline-induced cardiac hypertrophy // Gene. 2018. V. 642. P. 335–342. https://doi.org/10.1016/j.gene.2017.11.045
  56. Litviňuková M., Talavera-López C., Maatz H. et al. Cells of the adult human heart // Nature. 2020. V. 588. № 7838. P. 466–472. https://doi.org/10.1038/s41586-020-2797-4
  57. Meor Azlan N.F., Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease // Cells. 2020. V. 9. № 10. P. 1–21. https://doi.org/10.3390/cells9102293
  58. Miller A.N., Vaisey G., Long S.B. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin // Elife. 2019. V. 8. P. 1–17. https://doi.org/10.7554/eLife.43231
  59. Modi A.D., Khan A.N., Cheng W.Y.E., Modi D.M. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function // Acta Histochem. 2023. V. 125. № 4. https://doi.org/10.1016/j.acthis.2023.152045
  60. Okada Y., Sabirov R.Z., Merzlyak P.G., Numata T., Sato-Numata K. Properties, Structures, and Physiological Roles of Three Types of Anion Channels Molecularly Identified in the 2010’s // Front. Physiol. 2021. V. 12. P. 1–12. https://doi.org/10.3389/fphys.2021.805148
  61. Orlov S.N., Koltsova S.V., Kapilevich L.V., Dulin N.O., Gusakova S.V. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension // Biochem. 2014. V. 79. № 13. P. 1546–1561. https://doi.org/10.1134/S0006297914130070
  62. Owji A.P., Kittredge A., Zhang Y., Yang T. Structure and Function of the Bestrophin family of calcium-activated chloride channels // Channels. 2021. V. 15. № 1. 604–623. https://doi.org/10.1080/19336950.2021.1981625
  63. Prasad V., Bodi I., Meyer J.W. et al. Impaired cardiac contractility in mice lacking both the AE3 Cl–/HCO3– exchanger and the NKCC1 Na +–K+–2Cl– cotransporter: Effects on Ca 2+ handling and protein phosphatases // J. Biol Chem. 2008. V. 283. № 46. https://doi.org/10.1074/jbc.M803706200
  64. Ruiz Petrich E., Ponce Zumino A., Schanne O.F. Early action potential shortening in hypoxic hearts: Role of chloride current(s) mediated by catecholamine release // J. Mol. Cell Cardiol. 1996. V. 28. № 2. P. 279–290. https://doi.org/10.1006/jmcc.1996.0026
  65. Scherer C., Linz W., Busch A., Steinmeyer K. Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases // Cell Physiol. Biochem. 2001. V. 11. № 6. P. 321–330. https://doi.org/10.1159/000047818
  66. Sellers Z.M., De Arcangelis V., Xiang Y., Best P.M. Cardiomyocytes with disrupted CFTR function require CaMKII and Ca2+-activated Cl- channel activity to maintain contraction rate // J. Physiol. 2010. V. 588. № 13. P. 2417–2429. https://doi.org/10.1113/jphysiol.2010.188334
  67. Seyama I. Characteristics of the anion channel in the sino‐atrial node cell of the rabbit. // J. Physiol. 1979. V. 294. № 1. P. 447–460. https://doi.org/10.1113/jphysiol.1979.sp012940
  68. Sherry A.M., Stroffekova K., Knapp L.M. et al. Characterization of the human pH- and PKA-activated CIC-2G(2α) Cl– channel // Am. J. Physiol. – Cell Physiol. 1997. V. 273. № 42–2. P. 384–393. https://doi.org/10.1152/ajpcell.1997.273.2.c384
  69. Szigeti G., Rusznák Z., Kovács L., Papp Z. Calcium-activated transient membrane currents are carried mainly by chloride ions in isolated atrial, ventricular and Purkinje cells of rabbit heart // Exp. Physiol. 1998. V. 83. № 2. P. 137–153. https://doi.org/10.1113/expphysiol.1998.sp004097
  70. Takagi D., Okamoto Y., Ohba T., Yamamoto H., Ono K. Comparative study of hyperpolarization-activated currents in pulmonary vein cardiomyocytes isolated from rat, guinea pig, and rabbit // J. Physiol. Sci. 2020. V. 70. № 1. P. 1–20. https://doi.org/10.1186/s12576-020-00736-3
  71. Tilly B.C., Bezstarosti K., Boomaars W.E.M. et al. Expression and regulation of chloride channels in neonatal rat cardiomyocytes // Mol. Cell Biochem. 1996. V. 157. № 1–2. P. 129–135. https://doi.org/10.1007/bf00227891
  72. Uramoto H., Takahashi N., Dutta A.K. et al. Ischemia-Induced Enhancement of CFTR Expression on the Plasma Membrane in Neonatal Rat Ventricular Myocytes // Jpn. J. Physiol. 2003. V. 53. № 5. P. 357–365. https://doi.org/10.2170/jjphysiol.53.357
  73. Valverde C.A., Kornyeyev D., Ferreiro M. et al. Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion // Cardiovasc. Res. 2010. V. 85. № 4. P. 671–680. https://doi.org/10.1093/cvr/cvp371
  74. Vandenberg J.I., Bett G.C.L., Powell T. Contribution of a swelling-activated chloride current to changes in the cardiac action potential // Am. J. Physiol. – Cell Physiol. 1997. V. 273. № 42–2. P. 541–547. https://doi.org/10.1152/ajpcell.1997.273.2.c541
  75. Voronina Y.A., Fedorov A.V., Chelombitko M.A., Piunova U.E., Kuzmin V.S. α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions // Biochem. Suppl. Ser. A Membr. Cell Biol. 2023. V. 17. № 4. P. 39–50. https://doi.org/10.1134/S1990747823070061
  76. Wang H.S. Critical role of bicarbonate and bicarbonate transporters in cardiac function // World J. Biol. Chem. 2014. V. 5. № 3. P. 334. https://doi.org/10.4331/wjbc.v5.i3.334
  77. Wang J., Wang W., Wang H., Tuo B. Physiological and Pathological Functions of SLC26A6 // Front. Med. 2020. V. 7. P. 1–13. https://doi.org/10.3389/fmed.2020.618256
  78. Warth J.D., Collier M.L., Hart P. et al. CFTR chloride channels in human and simian heart // Cardiovasc Res. 1996. V. 31. № 4. P. 615–624. https://doi.org/10.1016/0008-6363(95)00245-6
  79. Xiang S.Y., Ye L.L., Duan L.L.M. et al. Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury // Acta Pharmacol Sin. 2011. V. 32. № 6. P. 824–833. https://doi.org/10.1038/aps.2011.61
  80. Xiong D., Heyman N.S., Airey J. et al. Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice // J. Mol. Cell Cardiol. 2010. V. 48. № 1. P. 211–219. https://doi.org/10.1016/j.yjmcc.2009.07.003
  81. Xu Y., Dong P.H., Zhang Z., Ahmmed G.U., Chiamvimonvat N. Presence of a calcium-activated chloride current in mouse ventricular myocytes // Am. J. Physiol. – Hear. Circ. Physiol. 2002. V. 283. № 52–1. P. 302–314. https://doi.org/10.1152/ajpheart.00044.2002
  82. Ye Z., Wu M.M., Wang C.Y. et al. Characterization of cardiac anoctamin1 Ca2+-activated chloride channels and functional role in ischemia-induced arrhythmias // J. Cell Physiol. 2015. V. 230. № 2. P. 337–346. https://doi.org/10.1002/jcp.24709
  83. Yu Y., Ye L., Li Y.G., Burkin D.J., Duan D.D. Heart-specific overexpression of the human short CLC-3 chloride channel isoform limits myocardial ischemia-induced ERP and QT prolongation // Int. J. Cardiol. 2016. V. 214. P. 218–224. https://doi.org/10.1016/j.ijcard.2016.03.191
  84. Zygmunt A.C. Intracellular calcium activates a chloride current in canine ventricular myocytes // Am. J. Physiol. – Hear. Circ. Physiol. 1994. V. 267. № 36–5. P. 1984–1995. https://doi.org/10.1152/ajpheart.1994.267.5.h1984
  85. Zygmunt A.C., Gibbons W.R. Calcium-activated chloride current in rabbit ventricular myocytes // Circ Res. 1991. V. 68. № 2. P. 424–437. https://doi.org/10.1113/expphysiol.1998.sp004097
  86. Zygmunt A.C., Gibbons W.R. Properties of the calcium-activated chloride current in heart // J. Gen Physiol. 1992. V. 99. № 3. P. 391–414. https://doi.org/10.1085/jgp.99.3.391
  87. Zygmunt A.C., Goodrow R.J., Weigel C.M. et al. INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells // Am. J. Physiol. 2013. V. 275. № 6. P. 1979–1992.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Диапазон значений равновесного потенциала по хлору (ECl–) в кардиомиоцитах. Внеклеточная концентрация хлора ([Cl–]o) – 125 мМ. а – зависимость ECl– от [Cl–]i. Желтая часть пунктирной кривой обозначает физиологический диапазон возможной [Cl–]i и ECl в кардиомиоцитах различных отделов сердца, красная и зеленая части пунктирной кривой – возможные значения [Cl–]i и ECl в кардиомиоцитах при гипотоническом и гипертоническом стрессе; б – потенциал действия в кардиомиоцитах сократительного (рабочего) миокарда. Область, обозначенная красным цветом – диапазон изменения ECl– в зависимости от [Cl–]i; в – потенциал действия в кардиомиоцитах синоатриального узла, обладающих пейсмекерной активностью. Черный и серый треугольники – значения МП, вплоть до которого имеет место входящая деполяризующая компонента ICl (при данном значении [Cl–]i). ICl, вх, деп – деполяризующий входящий хлорный ток, МП – мембранный потенциал.

Скачать (155KB)
3. Рис. 2. Верхние панели – изменение конфигурации потенциала действия кардиомиоцитов рабочего (слева) и пейсмекерного (справа) миокарда при активации хлорных каналов. Черный цвет – потенциал действия в контроле, красный цвет – потенциал действия при активации разных типов хлорных каналов – CFTR (а–б), LRRC8x (а–б), ClC-2 (в–г), TMEM16A (д–е). Нижние панели – изменение хлорного тока через разные хлорные каналы в зависимости от мембранного потенциала в ходе потенциала действия кардиомиоцитов рабочего (слева) и пейсмекерного (справа) миокарда – CFTR (а–б), LRRC8x (а–б), ClC-2 (в–г), TMEM16A (д–е). Зеленый цвет – входящий ток (ионы хлора выходят из клетки), синий цвет – выходящий ток (ионы хлора входят в клетку). На панели б входящая и выходящая компонента тока показаны для трех значений [Cl–]i, поскольку эта величина может различаться для центральной и периферической частей гетерогенной ткани САУ, что обуславливает различные электрофизиологические эффекты. Кривые построены с использованием уравнения Гольдмана–Ходжкина–Каца (ГХК) для трансмембранного ионного тока и учета вероятности пребывания канала в открытом состоянии.

Скачать (440KB)
4. Рис. 3. Свойства кальций-зависимого хлорного тока Ito,2 канала TMEM16A (Ano1): а – вольт-амперная характеристика Ito,2 при разных частотах стимуляции (0,1–2,5 Гц). Приведено с изменениями по Wang Zh. et al., Am. J. Physiol., 268, H1992-H2002, 1995; б – оригинальные записи Ito,2 при ступенчатом протоколе изменения поддерживаемого потенциала от –20 до +60 мВ. приведено с изменениями по Li G-R et al., Am. J. Physiol., 269, H463-H472, 1995; в – взаимодействие кальций-зависимого хлорного канала TMEM16A (ANO1), являющегося молекулярным субстратом Ito,2, c различными белками. ANO1 – кальций-зависимый хлорный канал TMEM16A, CLCA1, CLCA2, CLCA4 – регуляторные субъединицы хлорных каналов, BEST1, BEST2, BEST3 – бестрофины 1–3, CFTR – трансмембранный регулятор муковисцидоза, SLC26A6 – хлор-бикарбонатный обменник, TTYH3 – белок семейства tweety; г – репрезентативные примеры спонтанных “кальциевых волн”, регистрируемых в изолированных кардиомиоцитах. Сверху – кривые флюоресценции Fluo-4, полученные в результате усреднения значений по линии сканирования 5 мкм, снизу – псевдоизображения, отражающие изменение уровня флюоресценции во времени (за 300 мс) по линии сканирования (горизонтальная ось – время, вертикальная ось – линия сканирования).

Скачать (470KB)
5. Рис. 4. Электрические характеристики хлор-катионных котранспортеров: а – зависимость электродвижущей силы (ЭДС) от мембранного потенциала (МП) для ионов калия, хлора и котранспортера KCC; б – зависимость электродвижущей силы (ЭДС) от мембранного потенциала (МП) для ионов натрия, калия, хлора и котранспортера NKCC; в – вольт-амперная характеристика калиевого и хлорного токов, а также суммарного тока котранспортера KCC; г – вольт-амперная характеристика натриевого, калиевого и хлорного токов, а также суммарного тока котранспортера NKCC.

Скачать (372KB)
6. Рис. 5. Эффекты активации хлор-катионных котранспортеров на электрическую активность рабочего миокарда: а – изменение конфигурации потенциала действия кардиомиоцита рабочего миокарда при активации котранспортера ионов хлора и калия KCC (красный цвет, с учетом активности KCC) по сравнению с контролем (черный цвет, без учета активности KCC); б – изменение конфигурации потенциала действия кардиомиоцита рабочего миокарда при активации котранспортера ионов хлора и калия NKCC (красный цвет, с учетом активности NKCC) по сравнению с контролем (черный цвет, без учета активности NKCC); в – изменение интенсивности потока ионов хлора через котранспортеры KCC и NKCC в зависимости от мембранного потенциала.

Скачать (168KB)

© Российская академия наук, 2024