Heterocyclic molecules fragmentation due to single electron capture by doubly charged ions
- 作者: Basalaev A.A.1, Kuz’michev V.V.1, Panov M.N.1, Simon K.V.1, Smirnov O.V.1
-
隶属关系:
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences
- 期: 卷 43, 编号 12 (2024)
- 页面: 3-15
- 栏目: Элементарные физико-химические процессы
- URL: https://vestnikugrasu.org/0207-401X/article/view/684173
- DOI: https://doi.org/10.31857/S0207401X24120018
- ID: 684173
如何引用文章
详细
The of adenine (Ade, C5H5N5) and cyclodiglycine (DKP, C4H6N2O2) ions fragmentation formed in the singly electron capture during the interaction of molecules in the gas phase with C2+ and O2+ ions with an energy of 12 keV have been studied. The experimentally observed dependence of the relative fragmentation cross section of molecular ions on the type of projectile is qualitatively explained within the framework of the quasi-molecular model. Using the multi-configuration method of self-consistent field in complete active space (CASSCF), calculations of the fragmentation reaction paths of Ade+ and DKP+ ions were performed. The calculated appearance energies are in good agreement with the available experimental data.
作者简介
A. Basalaev
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: a.basalaev@mail.ioffe.ru
俄罗斯联邦, Saint Petersburg
V. Kuz’michev
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Email: a.basalaev@mail.ioffe.ru
俄罗斯联邦, Saint Petersburg
M. Panov
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Email: a.basalaev@mail.ioffe.ru
俄罗斯联邦, Saint Petersburg
K. Simon
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Email: a.basalaev@mail.ioffe.ru
俄罗斯联邦, Saint Petersburg
O. Smirnov
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Email: a.basalaev@mail.ioffe.ru
俄罗斯联邦, Saint Petersburg
参考
- H.-W. Jochims, M. Schwell, H. Baumgärtel et al., Chem. Phys., 314, 263 (2005). https://doi.org/10.1016/j.chemphys.2005.03.008
- S. Pilling, A. F. Lago, L. H. Coutinho et al., Rapid Commun. Mass Spectrom., 21, 3646 (2007). https://doi.org/10.1002/rcm.3259
- D. Barreiro-Lage, P. Bolognesi, J. Chiarinelli et al., J. Phys. Chem. Lett., 12, 7379 (2021). https://doi.org/10.1021/acs.jpclett.1c01788
- J.D. Chiarinelli, D. Barreiro-Lage, P. Bolognesi et al., Phys. Chem. Chem. Phys., 24, 5855 (2022). https://doi.org/10.1039/D1CP05811H
- D. Barreiro-Lage, J. Chiarinelli, P. Bolognesi et al., Phys. Chem. Chem. Phys., 25, 15635 (2023). https://doi.org/10.1039/D3CP00608E
- S. Feil, K. Gluch, S. Matt-Leubner et al., J. Phys. B: At. Mol. Opt. Phys., 37, 3013 (2004). https://doi.org/10.1088/0953-4075/37/15/001
- M.M. Dawley, K. Tanzer, W.A. Cantrell et al., Phys. Chem. Chem. Phys., 16, 25039 (2014). https://doi.org/10.1039/C4CP03452J
- P.J. M. van der Burgt, S. Finnegan, S. Eden. Eur. Phys. J. D., 69, 173 (2015). https://doi.org/10.1140/epjd/e2015-60200-y
- B. Li, X. Ma, X. L. Zhu et al., J. Phys. B: At. Mol. Opt. Phys., 42, 075204 (2009). https://doi.org/10.1088/0953-4075/42/7/075204
- J. de Vries, R. Hoekstra, R. Morgenstern et al., J. Phys. B: At. Mol. Opt., Phys., 35, 4373 (2002). https://doi.org/10.1088/0953-4075/35/21/304
- J. Tabet, S. Eden, S. Feil et al., Int. J. Mass Spectr., 292, 53 (2010). https://doi.org/10.1016/j.ijms.2010.03.002
- V.V. Afrosimov, A.A. Basalaev, O.S. Vasyutinskii et al., Eur. Phys. J. D, 69, 3 (2015). https://doi.org/10.1140/epjd/e2014-50435-5
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys. Lett., 48 (9), 11 (2022). https://doi.org/10.21883/TPL.2022.09.55073.19238
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Radiat. Phys. Chem., 193, 109984 (2022). https://doi.org/10.1016/j.radphyschem.2022.109984
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys., 67 (7), 812 (2022). https://doi.org/10.21883/TP.2022.07.54477.309-21
- G.M.J. Barca, C. Bertoni, L. Carrington et al., J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188
- Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 15, 782 (2021). https://doi.org/10.1134/S1990793121050134
- Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 16, 543 (2022). https://doi.org/10.1134/S1990793122030149
- G.M. Khrapkovskii, I.V. Aristov, D.L. Egorov et al., Rus. J. Phys. Chem. B,. 16, 862 (2022). https://doi.org/10.1134/S1990793122040066
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Rus. J. Phys. Chem. B, 17, 1025 (2023) https://doi.org/10.1134/S1990793123050172
- N.S. Hush, A.S. Cheung. Chem. Phys. Lett., 34, 11 (1975).
- C.T. Hwang, C.L. Stumpf, Y.-Q. Yu et al., Int. J. Mass Spectrom., 182/183. 253 (1999).
- N. Russo, M. Toscano, A. Grand. J. Comput. Chem., 21, 1243 (2000).
- R. Improta, G. Scalmani, V. Barone, Int. J. Mass Spectrom., 201, 321 (2000).
- R.K. Janev, L.P. Presnyakov, Phys. Rep., 70, 1 (1981) https://doi.org/10.1016/0370-1573(81)90161-7
- J. Lin, C.Yu, S. Peng, I. Akiyama et al., J. Am. Chem. Soc.. 102, 4627 (1980).
- A.B. Trofimov, J. Schirmer, V.B. Kobychev et al., J. Phys. B: At. Mol. Opt. Phys. 39, 305 (2006). https://doi.org/10.1088/0953-4075/39/2/007
- A.P. W. Arachchilage, F. Wang, V. Feyer et al., J. Chem. Phys., 133, 174319 (2010). https://doi.org/10.1063/1.3499740
- J. Franz, F. A. Gianturco, Eur. Phys. J. D, 68, 279 (2014). https://doi.org/10.1140/epjd/e2014-50072-0
- A. Kramida, Yu. Ralchenko, J. Reader et al., NIST Atomic Spectra Database (ver. 5.9). (2021). https://doi.org/10.18434/T4W30F
补充文件
