On the Mechanism of Combustion Propagation in Porous Nanothermites
- 作者: Kirilenko V.G.1, Dolgoborodov A.Y.1,2,3, Brazhnikov M.A.1, Kuskov M.L.1
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Joint Institute for High Temperatures, Russian Academy of Sciences
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- 期: 卷 42, 编号 8 (2023)
- 页面: 27-38
- 栏目: Combustion, explosion and shock waves
- URL: https://vestnikugrasu.org/0207-401X/article/view/674837
- DOI: https://doi.org/10.31857/S0207401X23080058
- EDN: https://elibrary.ru/HYOWOE
- ID: 674837
如何引用文章
详细
The fast combustion process of nanosized porous Al + CuO mixtures placed in glass tubes is studied using a high-speed video recording. Mathematical processing of the high-velocity frame sequence obtained using neutral filters of different thicknesses made it possible to determine the nanothermite (NT) burning rate in different parts of the tube and experimentally estimate the sizes of the ignition and combustion zones of NT. To explain the mechanism of combustion propagation, a simple model based on Darcy’s law is proposed for the filtration of hot products through the macropores. Based on the results of the model experiments on the combustion of NT in glass-tubes filled by portions of the mixture separated by inert barriers (glass microspheres, air gaps), it was possible to develop a simple procedure to estimate the permeability of a nanosized mixture and pressure in the combustion zone.
作者简介
V. Kirilenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: aldol@chph.ras.ru
Moscow, Russia
A. Dolgoborodov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: aldol@chph.ras.ru
Moscow, Russia; Moscow, Russia; Moscow, Russia
M. Brazhnikov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: aldol@chph.ras.ru
Moscow, Russia
M. Kuskov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: aldol@chph.ras.ru
Moscow, Russia
参考
- Energetic nanomaterials: synthesis, characterization, and application / Eds. Zarko V.E., Gromov A.A. Amsterdam: Elsevier, 2016.
- Nano-Energetic Materials: Energy, Environment and Sustainability / Eds. Bhattacharya S., Agarwal A.K., Rajagopalan T., Patel V.K. Singapore: Springer Nature Singapore, 2019.
- Yetter R.A. // Proc. Combust. Inst. 2021. V. 38. № 1. P. 57; https://doi.org/10.1016/j.proci.2020.09.008
- Polis M., Stolarczyk A., Glosz K., Jarosz T. // Materials. 2022. V. 15. № 9. P. 3215; https://doi.org/10.3390/ma15093215
- Pantoya M., Granier J. // J. Therm. Anal. Calorim. 2006. V. 85. P. 37; https://doi.org/10.1007/s10973-005-7342-z
- Dolgoborodov A.Yu., Kirilenko V.G., Brazhnikov M.A. et al. // Def. Technol. 2022. V. 18. № 2. P. 194; https://doi.org/10.1016/j.dt.2021.01.006
- Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю. и др. // Горение и взрыв. 2022. Т. 15. № 1. С. 82.
- Densmore J.M., Sullivan K.T., Gash A.E., Kuntz J.D. // Propellants Explos. Pyrotech. 2014. V. 39. № 3. P. 416; https://doi.org/10.1002/prep.201400024
- Wang Y., Dai J., Xu J., Shen Y. et al. // Vacuum. 2021. V. 184. P. 109878; https://doi.org/10.1016/j.vacuum.2020.109878
- Weismiller M.R., Malchi J.Y., Yetter R.A., Foley T.J. // Proc. Combust. Inst. 2009. V. 32. № 2. P. 1895; https://doi.org/10.1016/j.proci.2008.06.191
- Baijot V., Rouhani M., Rossi C., Esteve A. // Combust. and Flame. 2017. V. 180. P. 10; https://doi.org/10.1016/j.combustflame.2017.02.031
- Egan G., Zachariah M. // Ibid. 2015. V. 162. P. 2959; https://doi.org/10.1016/j.combustflame.2015.04.013
- Jacob R., Kline D., Zachariah M. // J. Appl. Phys. 2018. V. 123. P. 115902; https://doi.org/10.1063/1.5021890
- Sanders V., Asay B., Foley T. et al. // J. Propul. Power. 2007. V. 23. № 4. P. 707; https://doi.org/10.2514/1.26089
- Saceleanu F., Idir M., Chaumeix N., Wen J.Z. // Front. Chem. 2018. V. 6. P. 465; https://doi.org/10.3389/fchem.2018.00465
- Jabraoui H., Esteve A., Schoenitz M. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 25. P. 29451; https://doi.org/10.1021/acsami.2c07069
- Sullivan K., Zachariah M.R. // J. Propul. Power. 2010. V. 26. № 3. P. 467; https://doi.org/10.2514/1.45834
- Ген М.Я., Петров Ю.И. // Успехи химии. 1969. Т. 38. № 12. С. 2249.
- Kuskov M.L., Zhigach A.N., Leipunskii I.O. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 558. № 1. Article 012022; https://doi.org/10.1088/1757-899X/558/1/012022
- Streletskii A.N., Kolbanev I.V., Vorobieva G.A. et al. // J. Mater. Sci. 2018. V. 53. № 19. P. 13550; https://doi.org/10.1007/s10853-018-2412-3
- Стрелецкий А.Н., Колбанев И.В., Трошин К.Я. и др. // Хим. физика. 2016. Т. 35. № 7. С. 79; https://doi.org/10.7868/S0207401X16070116
- Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю., Бражников М.А. // Горение и взрыв. 2020. Т. 13. № 1. С. 145.
- Kaviany M. Principles of Heat Transfer in Porous Media. New York: Second Edition. Springer-Verlag, 1995; https://doi.org/10.1007/978-1-4612-4254-3
- Um K., Zhang X., Katsoulakis M., Plechas P., Tartakovsky D.M. // J. Appl. Phys. 2018. V. 123. № 7. Article 075103; https://doi.org/10.1063/1.5009691
- Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: Справ. М.: Энергоатомиздат, 1991.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Физматлит, 2001.
- Fischer S.H., Grubelich M.C. // Proc. 24th Intern. Pyrotechnics Seminar: Sandia National Laboratories (SNL), Monterey, USA. 1998. V. 1176. P. 56.
- Кришеник П.М., Костин С.В., Озерковская Н.И., Шкадинский К.Г. // Хим. физика. 2019. Т. 38. № 2. С. 45; https://doi.org/10.1134/S0207401X19020092
- Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73. https://doi.org/10.31857/S0207401X22030086
补充文件
