Квантовохимическое моделирование взаимодействия фуллерена С60 с модельными радикалами роста аллилхлорида винильного типа
- Авторы: Диниахметова Д.Р.1, Колесов С.В.1
-
Учреждения:
- Уфимский федеральный исследовательский центр Российской академии наук
- Выпуск: Том 43, № 12 (2024)
- Страницы: 30-39
- Раздел: Строение химических соединений, квантовая химия, спектроскопия
- URL: https://vestnikugrasu.org/0207-401X/article/view/684175
- DOI: https://doi.org/10.31857/S0207401X24120036
- ID: 684175
Цитировать
Аннотация
Рассмотрены реакции последовательного четырехкратного присоединения радикалов роста аллилхлорида винильного типа к фуллерену С60 с образованием практически всех возможных видов аддуктов. Проанализированы структуры продуктов данных реакций и рассчитаны термические характеристики реакций, такие как тепловые эффекты и энтальпии активации. При радикально инициируемом взаимодействии аллилхлорида и фуллерена С60 возможно присоединение до трех радикалов роста аллилхлорида. Трисаддукты при этом представляют собой стабильные радикалы аллильного типа, которые способны к присоединению четвертого аллилхлоридного радикала с образованием молекулярных продуктов.
Об авторах
Д. Р. Диниахметова
Уфимский федеральный исследовательский центр Российской академии наук
Автор, ответственный за переписку.
Email: diniakhmetova@rambler.ru
Уфимский институт химии
Россия, УфаС. В. Колесов
Уфимский федеральный исследовательский центр Российской академии наук
Email: diniakhmetova@rambler.ru
Уфимский институт химии
Россия, УфаСписок литературы
- Cao T., Webber S.E. // Macromolecules. 1995. V. 28. № 10. P. 3741. https://doi.org/10.1021/ma00114a033
- Cao T., Webber S.E. // Ibid. 1996. V. 29. № 11. P. 3826. https://doi.org/10.1021/ma9517761
- Stewart D., Imrie C.T. // Chem. Commun. 1996. № 11. P. 1383. https://doi.org/10.1039/CC9960001383
- Arsalani N., Geckeler K.E. // Fullerene Sci. Technol. 1996. V. 4. № 5. P. 897. https://doi.org/10.1080/10641229608001151
- Seno M., Fukunaga H., Sato T. // J. Polym. Sci., Part A: Polym. Chem. 1998. V. 36. № 16. P. 2905. https://doi.org/10.1002/(SICI)1099-0518(19981130)36:16<2905::AID-POLA9>3.0.CO;2-9
- Chen Y., Lin K.-C. // Ibid. 1999. V. 37. № 15. P. 2969. https://doi.org/10.1002/(SICI)1099-0518(19990801) 37:15<2969::AID-POLA30>3.0.CO;2-G
- Ford W.T., Graham T.D., Mourey T.H. // Macromolecules. 1997. V. 30. № 21. P. 6422. https://doi.org/10.1021/ma970238g
- Ford W.T., Nishioka T., McCleskey S.C. et al. // Ibid. 2000. V. 33. № 7. P. 2413. https://doi.org/10.1021/ma991597+
- Schröder C. // Fullerene Sci. Technol. 2001. V. 9. № 3. P. 281. https://doi.org/10.1081/FST-100104494
- Seno M., Maeda M., Sato T. // J. Polym. Sci., Part A: Polym. Chem. 2000. V. 38. № 14. P. 2572. https://doi.org/10.1002/1099-0518(20000715) 38:14<2572::AID-POLA80>3.0.CO;2-3
- Курмаз С.В., Пыряев А.Н., Образцова Н.А. // Высокомолекуляр. cоединения. Cер. Б. 2011. Т. 53. № 9. C. 1633.
- Singh R., Srivastava D., Upadhyay S.K. // J. Macromol. Sci., Part A. 2011. V. 48. № 8. P. 595. https://doi.org/10.1080/15226514.2011.586267
- Singh R., Srivastava D., Upadhyay S.K. // Polym. Sci. Ser. B. 2012. V. 54. № 1–2. P. 88. https://doi.org/10.1134/S1560090412020066
- Singh R., Srivastava D., Upadhyay S.K. // Des. Monomers Polym. 2012. V. 15. № 3. P. 311. https://doi.org/10.1163/156855511X615704
- Курмаз С.В., Неделько В.В., Перепелицына Е.О. и др. // ЖОХ. 2013. Т. 83. № 3. С. 443.
- Юмагулова Р.Х., Кузнецов С.И., Диниахметова Д.Р. и др. // Кинетика и катализ. 2016. Т. 57. № 3. С. 383. https://doi.org/10.7868/S0453881116030151
- Cousseau J. et al. // ECS Meet. Abstr. 2006. V. MA2005-01. Abstract 865. https://doi.org/10.1149/MA2005-01/21/865
- Huang C.-W., Chang Y.-Y., Cheng C.-C. et al. // Polymers. 2022. V. 14. № 22. P. 4923. https://doi.org/10.3390/polym14224923
- Baskar A.V., Benzigar M.R., Talapaneni S.N. et al. // Adv. Funct. Mater. 2022. V. 32. № 6. P. 2106924. https://doi.org/10.1002/adfm.202106924
- Sakakibara K., Wakiuchi A., Murata Y. et al. // Polym. Chem. 2020. V. 11. № 27. P. 4417. https://doi.org/10.1039/D0PY00458H
- Атовмян E.Г. // Изв. АН. Сер. хим. 2017. Т. 66. № 3. С. 567.
- Юмагулова Р.Х., Колесов С.В. // Вестн. Башкирского ун-та. 2020. Т. 25. № 1. С. 47. https://doi.org/10.33184/bulletin-bsu-2020.1.8
- Rogers K.M., Fowler P.W. // Chem. Commun. 1999. № 23. Р. 2357. https://doi.org/10.1039/A905719F
- Ioffe I.N., Goryunkov A.A., Boltalina O.V. et al. // Fullerenes Nanotubes Carbon Nanostruct. 2005. V. 12. № 1–2. Р. 169. https://doi.org/10.1081/FST-120027152
- Sabirov D.Sh., Bulgakov R.G. // Chem. Phys. Lett. 2011. V. 506. № 1–3. P. 52. https://doi.org/10.1016/j.cplett.2011.02.040
- Евлампиева Н.П., Добродумов А.В., Назарова О.В. и др. // ЖОХ. 2005. Т. 75. № 5. С. 795.
- Sabirov D.Sh., Garipova R.R., Bulgakov R.G. // J. Phys. Chem. A. 2013. V. 117. № 49. P. 13176. https://doi.org/10.1021/jp409845q
- Zhao P., Li M., Yang T. // Handbook of Fullerene Science and Technology / Eds. Lu X., Akasaka T., Slanina Z. Singapore: Springer, 2021. P. 541.
- Диниахметова Д.Р., Фризен А.К., Юмагулова Р.Х. и др. // Высокомолекуляр. соединения. Сер. Б. 2018. Т. 60. № 3. С. 259. https://doi.org/10.7868/S2308113918030105
- Diniakhmetova D.R., Friesen A.K., Kolesov S.V. // Intern. J. Quantum Chem. 2016. V. 116. № 7. P. 489. https://doi.org/10.1002/qua.25071
- Diniakhmetova D.R., Friesen A.K., Kolesov S.V. // Ibid. 2020. V. 120. № 18. P. e26335. https://doi.org/10.1002/qua.26335
- Sarvestani M.R.J., Doroudi Z. // Rus. J. Phys. Chem. B. 2022. V. 16. № 5. P. 820. https://doi.org/10.1134/S1990793122050098
- Azarakhshi F., Khaleghian M. // Rus. J. Phys. Chem. B. 2021. V. 15. № 1. P. 170. https://doi.org/10.1134/S1990793121010152
- Akman F. // Rus. J. Phys. Chem. B. 2021. V. 15. № 3. P. 517. https://doi.org/10.1134/S1990793121030027
- Садыков Р.А., Хурсан С.Л., Суханов А.А. и др. // Хим. физика. 2023. Т. 42. № 12. С. 3. https://doi.org/10.31857/S0207401X23120099
- Давтян А.Г., Манукян З.О., Арсентьев С.Д. и др. // Хим. физика. 2023. Т. 42. № 4. С. 20. https://doi.org/10.31857/S0207401X23040052
- Laikov D.N., PRIRODA, Electronic Structure Code. Version 6. 2006.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. хим. 2005. № 3. С. 804.
- Sabirov D.Sh., Bulgakov R.G. // Comput. Theor. Chem. 2011. V. 963. № 1. P. 185. https://doi.org/10.1016/j.comptc.2010.10.016
- Zverev V.V., Kovalenko V.I., Romanova I.P. et al. // Intern. J. Quantum Chem. 2007. V. 107. № 13. P. 2442. https://doi.org/10.1002/qua.21373
- Misochko E.Ya., Akimov A.V., Belov V.A. et al. // J. Chem. Phys. 2007. V. 127. № 8. Р. 084301. https://doi.org/10.1063/1.2768350
- Shestakov A.F. // Russ. J. Gen. Chem. 2008. V. 78. № 4. P. 811. https://doi.org/10.1134/S1070363208040403
- Godly E.W., Taylor R. // Pure Appl. Chem. 1997. V. 69. № 7. P. 1411. https://doi.org/10.1351/pac199769071411
- Taylor R.J. // J. Chem. Soc., Perkin Trans. 1993. V. 2. № 5. P. 813.
- Ulitin N.V., Tereshchenko K.A., Friesen A.K. et al. // Intern. J. Chem. Kinet. 2018. V. 50. № 10. P. 742. https://doi.org/10.1002/kin.21209
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmanil G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision C.01. Wallingford (CT), USA: Gaussian, Inc., 2010.
- Диниахметова Д.Р., Фризен А.К., Колесов С.В. // Хим. физика. 2020. Т. 39. № 11. С.16. https://doi.org/10.31857/S0207401X20110035
- Krusic P.J., Wasserman E., Keizer P.N. et al. // Science. 1991. V. 254. № 5035. P. 1183. https://doi.org/10.1126/science.254.5035.1183
Дополнительные файлы
