Spin adducts in photolysis of mixed benzoyl phosphonium-iodonium ylides in dichloromethane

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Mixed phosphonium-iodonium ylides are of interest as reactants for the synthesis of new heterocyclic compounds. Recently it has been shown that the reactions of the phosphonuim-iodonium ylides under the action of light occurs with the formation of radicals. The radicals generated in the photolysis of the ylide itself and the compounds, which are its fragments, diphenyliodonium salt and triphenylphosphine, as well as participating in its reactions, dichloromethane and phenylacetylene, have been studied with the use of PBN and DMPO spin traps. The obtained results have confirmed the radical mechanism of the photodecomposition of the ylide and allowed to specify the composition of primary radicals generated in the photolysis. The unknown magnetic-resonance parameters for some radicals have been determined.

Texto integral

Acesso é fechado

Sobre autores

I. Potapov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Moscow State Lomonosov University

Email: nekip@sky.chph.ras.ru
Rússia, Moscow; Moscow

M. Motyakin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: nekip@sky.chph.ras.ru
Rússia, Moscow

T. Podrugina

Moscow State Lomonosov University

Email: nekip@sky.chph.ras.ru
Rússia, Moscow

T. Nekipelova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nekip@sky.chph.ras.ru
Rússia, Moscow

Bibliografia

  1. T. Baumgartner, Acc. Chem. Res. 47, 1613 (2014). https://doi.org/10.1021/ar500084b
  2. E. Regulska, C. Romero-Nieto, Dalton Trans. 47, 10344 (2018). https://doi.org/10.1039/C8DT01485J
  3. M.P. Duffy, W. Delaunay, P. Bouit et al, Chem. Soc. Rev. 45, 5296 (2016). https://doi.org/10.1039/C6CS00257A
  4. A. Belyaev, Y.-T. Chen, S.-H. Su et al, Chem. Commun. 53, 10954 (2017). https://doi.org/10.1039/C7CC06882D
  5. J.A. Kampmeier, T.W. Nalli, J. Org. Chem. 59, 1381 (1994). https://doi.org/10.1021/jo00085a030
  6. T.D. Nekipelova, V.V. Kasparov, A.L. Kovarskii et al, Dokl. Phys. Chem. 474, 109 (2017). https://doi.org/10.1134/S0012501617060070
  7. T.D. Nekipelova, M.V. Motyakin, V.V. Kasparov et al, Russ. J. Phys. Chem. B 13, 907 (2019). https://doi.org/10.1134/S1990793119060265
  8. I.D. Potapov, M.V. Motyakin, T.D. Nekipelova, T.A. Podrugina, Russ. Chem. Bull., 73, 523 (2024). https://doi.org/10.1007/s11172-024-4161-6
  9. F.A. Villamena, Reactive species detection in biology. From Fluorescence to Electron Paramagnetic Resonance Spectroscopy (Elsevier, Amsterdam, 2016).
  10. M. J. Davies, Methods 109, 21 (2016). https://doi.org/10.1016/j.ymeth.2016.05.013
  11. E.G. Janzen, G.A. Coulter, U.M. Oehler et al, Canad. J. Chem. 60, 2725 (1982). https://doi.org/10.1139/v82-392
  12. N.A. Chumakova, A.E. Lazhko, M.V. Matveev et al, Russ. J. Phys. Chem. B. 16, 1397 (2022). https://doi.org/10.1134/S1990793122080073
  13. T.A. Ivanova, E.M. Zubanova, A.A. Popova et al, Russ. J. Phys. Chem. B. 16, 1208 (2022). https://doi.org/10.1134/S1990793122070089
  14. T.A. Ivanova, M.Ya. Melnikov, P.S. Timashev, E.N. Golubeva, Russ. J. Phys. Chem. B. 17, 471 (2023). https://doi.org/10.1134/S1990793123020276
  15. A.A. Popova, E.N. Golubeva, Russ. J. Phys. Chem. B. 17, 1540 (2023). https://doi.org/10.1134/S1990793123070187
  16. E.D. Matveeva, T.A. Podrugina, A.S. Pavlova et al, Eur. J. Org. Chem. 14, 2323 (2009). https://doi.org/10.1002/ejoc.200801251
  17. E.D. Matveeva, D.S. Vinogradov, T.A. Podrugina et al, Eur. J. Org. Chem. 33, 7324 (2015). https://doi.org/10.1002/ejoc.201500876
  18. http://www.niehs.nih.gov/research/resources/software/toxpharm/tools/index.cfm
  19. I.I. Levina, O.N. Klimovich, D.S. Vinogradov et al, J. Phys. Org. Chem. 31, e3844 (2018).
  20. G.R. Buettner, Free Radic. Biol. Med. 3, 259 (1987).
  21. M. J. Davies, T. F. Slater, Chem.-Biol. Interact. 58, 137 (1986).
  22. H. Sang, E. G. Janzen, J. L. Poyer et al, Free Radic. Biol. Med. 22, 843 (1997).
  23. M.A. Brusa, Y. Di Iorio, M.S. Churio et al, J. Mol. Catal. A: Chem. 268, 29 (2007). https://doi.org/10.1016/j.molcata.2006.12.008
  24. P. Calza, C. Minero, E. Pelizzetti, J. Chem. Soc. Faraday Trans. 93, 3765 (1997). https://doi.org/10.1039/A703867D
  25. P. Calza, C. Minero, E. Pelizzetti, Environ. Sci. Technol. 31, 2198 (1997). https://doi.org/10.1021/es960660x
  26. P. P. Romanczyk, S. S. Kurek, Electrochim. Acta. 351, 136404 (2020). https://doi.org/10.1016/j.electacta.2020.136404
  27. J.L. Dektar, N.P. Hacker, J. Org. Chem. 55, 639 (1990). https://doi.org/10.1021/jo00289a045
  28. C. Bernofsky, B.M.R. Bandara, O. Hinojosa, Free Radic. Biol. Med. 8, 231 (1990).
  29. S. Stan, M.A. Daeschel, J. Agric. Food Chem. 53, 4906 (2005). https://doi.org/10.1021/jf047918k
  30. H.G. Aurich, M. Schmidt, Th. Schwerzel, Ber. 118, 1086 (1985).
  31. B. M. R. Bandara, O. Hinojosa, C. Bernofsky, J. Org. Chem. 57, 2652 (1992).
  32. Y. Sueishi, Y. Miyake, Bull. Chem. Soc. Jpn. 70, 397 (1997).
  33. Y. Sueishi, Y. Nishihara, J. Chem. Research (S). 84 (2001).
  34. L. Noel-Duchesneau, El. Lagadic, F. Morlet-Savary et al, Org. Lett. 18, 5900 (2016).
  35. C.F. Chignell, A.G. Motten, R.H. Sik et al, Photochem. Photobiol. 59, 5 (1994).
  36. J.S. Hwang, C.P. Tsonis, Polymer. 22, 1462 (1981).
  37. C.P. Novakov, D. Feierman, A.I. Cederbaum et al, Chem. Res. Toxicol. 14, 1239 (2001). https://doi.org/10.1021/tx015507h
  38. T. Kunitake, S. Murakami, J. Polym. Sci., Polym. Chem. Ed. 12, 67 (1974).
  39. H. Candra, I.M.T. Davidson, M.C.R. Symons, J. Chem. Soc., Faraday Trans. 1. 79, 2705 (1983).
  40. W.A. Pryor, S.K. Nuggehalli, K.V. Scherer et al, Chem. Res. Toxicol. 3, 2 (1990).
  41. L. Eberson, J. Chem. Soc. Perkin Trans. 2. 10, 1807 (1992). https://doi.org/10.1039/P29920001807

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental (black lines) and theoretical (red lines) EPR spectra of PBN (spectrum 1) and DMPO (spectrum 2) adducts after 4-minute photolysis (λ = 365 nm) of a dichloromethane CH2Cl2 solution at 290 K.

Baixar (46KB)
3. Fig. 2. Experimental (black lines) and theoretical (red lines) EPR spectra of PBN (a) and DMPO (b) spin adducts recorded after 3-min UV irradiation of Ph2I+Cl- in CH2Cl2 at 290 K; (a) – spectra of PBN adducts after irradiation for 0 – (1), 5 – (2), 25 min (3); b – EPR spectrum of DMPO adducts (1) recorded after 3-min photolysis of the solution (EPR lines related to the DMPO/•CH2Cl adduct are marked with asterisks); EPR spectrum of DMPO adducts (2) recorded after 10-min photolysis of the solution.

Baixar (103KB)
4. Fig. 3. Experimental (black lines) and theoretical (red lines) EPR spectra of spin adducts recorded after UV irradiation of a solution of (Ph)3P in CH2Cl2 at 290 K: 1 – spectrum of PBN adducts recorded after 80-second UV irradiation of the solution; 2 – EPR spectrum of DMPO adducts after 120-second UV irradiation of the solution.

Baixar (86KB)
5. Fig. 4. Experimental (black lines) and theoretical (red lines) EPR spectra of PBN (spectrum 1) and DMPO (spectrum 2) adducts recorded after UV irradiation of a solution of phenylacetylene in CH2Cl2 at 290 K.

Baixar (61KB)
6. Fig. 5. Experimental (black lines) and theoretical (red lines) EPR spectra of the adducts PBN (spectrum 1) and DMPO (spectrum 2) after photolysis (λ = 365 nm) of a solution of ylide 1 in CH2Cl2 at 290 K. The inset shows the low-field component of the signal from the DMPO/F• radical, amplified 100-fold.

Baixar (57KB)
7. Scheme 1

Baixar (11KB)
8. 1

Baixar (3KB)
9. Scheme 2

Baixar (18KB)
10. Scheme 3

Baixar (15KB)
11. 2

Baixar (5KB)
12. 3

Baixar (10KB)
13. Scheme 4

Baixar (11KB)
14. Scheme 5

Baixar (17KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024